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Abstract We utilize the concept of Vine Copulas to build multi-dimensional copu-
las out of bivariate ones, as bivariate copulas are quite well understood and easy to
estimate. The basis of our multidimensional copula is a bivariate spatio-temporal
copula varying over space and time. The spatio-temporal vine copula models the
underlying spatio-temporal random field for local neighbourhoods in a fully proba-
bilistic manner.

Focusing on the interpolation of spatially under-sampled but temporally rich ran-
dom fields, we apply this newly developed approach to a large data set of daily
mean PM10 measurements over Europe during 2005. A cross-validation study is
conducted to asses the power and quality of this approach.

1 Introduction

Copulas are capable of modelling any kind of dependence between random variables
detached from their margins. The ability to capture the dependencies of extreme
values made them popular in finance. Extreme values can also be found in many
spatial datasets and their non-Gaussian dependence structures can easily be captured
with copulas. Exploiting copulas potentially improves the interpolation of skewed
and heavy tailed data.

The concept of Vine Copulas allows us to build multi-dimensional copulas out of
bivariate ones. As bivariate copulas are quite well understood and easy to estimate,
vine copulas are a promising tool to model multivariate distributions. The basis
of our multidimensional copula is a bivariate spatio-temporal copula varying over

Benedikt Gräler
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space and time. The vine copula is fitted to local neighbourhoods and used to derive
estimates from the neighbourhood’s multivariate distribution.

Focusing on the interpolation of spatially under-sampled but temporally rich ran-
dom fields, we apply this newly developed approach to a large data set of daily mean
PM10 measurements over Europe during 2005. To asses the goodness of this model,
we conduct a cross validation on the PM10 measurements predicting the stations
mean, median and 95%-quantile.

In the following, we will give a brief introduction to copulas and extend this
concept to spatial and spatio-temporal bivariate copulas and later to spatio-temporal
vine copulas. In Section 3, the new approach is applied to a one year series of daily
PM10 measurements in Europe followed by a discussion in Section 4. In the closing
section, we conclude and point to further directions of this work.

2 Copulas

Copulas are a probabilistic tool that allow to model altering dependencies across the
full range of multivariate distributions. Following Sklar’s theorem (see e.g. [7], as
well for a detailed introduction), any d-variate distribution H can be decomposed
into its marginal cumulative distribution functions F1, . . . , Fd and its copula C by:

H(x1, . . . ,xd) =C
(
F1(x1), . . . ,Fd(xd)

)
The copula C can be seen as a d-variate uniform distribution function over the hyper
unit-cube [0,1]d . Following the above decomposition, allows to build a vast set of
multivariate distributions out of desired margins and a dedicated dependence struc-
ture.

Unfortunately, as flexibility increases with the dimension, so does the effort to
estimate an appropriate copula. Quite many copula families have been discussed for
the bivariate case, of which only few can easily be extended to the multivariate case
without loosing the necessary flexibility. One possible approximation of multivariate
copulas is obtained by vine copulas [1, 2, 5]. Vine copulas decompose a multivariate
copula into a set of (conditional) bivariate ones. Any of these bivariate building
blocks can be modelled by the best suitable copula without any restriction. This is
advantageous (1) as it allows for a huge degree of flexibility and (2) as established
estimation routines for the bivariate case can be used. The complete d-dimensional
density of this copula is given as the product of all involved 1

2 d(d− 1) bivariate
copulas and corresponding conditional cumulative distribution functions.

Naturally, the decomposition of a multivariate copula is not unique and a different
ordering of the variables might lead to a different estimate. The two basic concepts
of decomposition are called canonical vines (C-vines) and D-vines [1] where in the
first approach, the first variable is used as conditioning variable for the following
ones, and in the latter approach, the conditioning is done sequentially. More general
decompositions are referred to as regular vines (R-vines). In this work, we will build
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Fig. 1 Structure of a 4-dimensional C-vine. The conditioned variables ui,ν := Fi|ν (i|ν), with
i ∈ {2,3,4} and ν ∈

{
{1},{1,2}

}
can be derived from the bivariate copulas of the preceding

tree as illustrated in equation 1.

on the canonical vine structure exemplary depicted in Figure 1 for a 4-dimensional
copula. The full density of this C-vine copula is given by:

c(u1, . . . ,u4) = c34|12(u3|12,u4|12)
· c23|1(u2|1,u3|1) · c24|1(u2|1,u4|1)
· c12(u1,u2) · c13(u1,u3) · c14(u1,u4)

The conditioned variables ui|ν , i ∈ {2,3,4} and ν ∈
{
{1},{1,2}

}
, are derived

through the copulas in the preceding tree (e.g. from tree 1):

ui|1 := Fi|1(ui|u1) =
∂C1i(u1,ui)

∂u1

∣∣∣∣
u1

, i ∈ {2,3,4} (1)

A similar equation holds for the higher order trees.

2.1 Spatial and Spatio-Temporal Bivariate Copulas

In the domain of geosciences, one typically deals with spatially or spatio-temporally
spread data. The locations of measurements in space and time can usually be used
to derive relationships of the variables. In the following, we will assume a stationary
and isotropic spatial (or spatio-temporal) random field. That is, we assume for any
location s ∈R in our spatial (spatio-temporal) region R the random filed Z to take
the same random variable X = Z(s) and the dependence between two random vari-
ables X1 := Z(s1) and X2 := Z(s2) is a function of the separating Euclidean distance
h := ||s1− s2|| only.

Considering the task of interpolating a spatial random field, for instance, the lo-
cations (or distances between locations) are used to derive the covariance matrix
for the kriging predictor. We will follow a similar avenue and define a spatial bi-
variate copula as a bivariate copula taking the distance h ∈ R≥0 as parameter with
the property that for h→ ∞ the copula tends to the product copula Π(u,v) = u · v
denoting independence. Typically, the spatial bivariate copula will tend to the up-
per Fréchet-Hoeffding bound M(u,v) := min(u,v) denoting perfect positive depen-



4 Benedikt Gräler, Edzer Pebesma

dence as h approaches 0. However, due to missing information on the very short
distance variation of the phenomenon, this bound does not have to be reached (sim-
ilar as the nugget effect in kriging). In this work, the spatial copula is given as a
convex linear combination of bivariate copulas where the mixing parameter func-
tion λ : R≥0 → [0,1] and the copulas depend on the separating distance h of two
locations s1,s2:

Ch(u1,u2) := λ (h) ·Ci(u1,u2)+
(
1−λ (h)

)
·C j(u1,u2), (i, j) := I(h)

Where I denotes a set of paired indicators separating the spatial range rS of the
model into a set of disjoint intervals (lags) and I(h) provides the one pair of indexes
(i, j) with respect to the distance h and corresponding copulas Ci and C j. The cop-
ulas Ci and C j denote the boundary conditions. Any distance larger than the spatial
range rS is modelled with the product copula Π . Due to the convex combination of
copulas, the spatial bivariate copula will again be a copula for any distance h.

We define a spatio-temporal bivariate copula as a bivariate copula taking two
parameters, the spatial and temporal separating distances h and t fading towards
the product copula Π if h or t tend to infinity. This could for instance be realized
as a convex combination of spatial bivariate copulas. For now, we consider only
discrete points in time. Typically, this corresponds to the temporal resolution of
measurements or aggregates thereof. Thus, the spatio-temporal bivariate copula can
be defined as a set of spatial bivariate copulas indexed by the temporal gaps 1, . . . ,rT
investigated:

Ch,t(u1,u2) :=


C1

h(u1,u2) , t = 1
...

...
CrT

h (u1,u2) , t = rT

2.2 Spatio-Temporal Vine Copulas

A spatio-temporal vine copula models a neighbourhood of a spatio-temporal ran-
dom field of size k+1. This neighbourhood is composed of one central location and
its k-neighbours in space and time. The first tree of the vine is realized by spatio-
temporal bivariate copulas, reflecting the fact that the dependence structure changes
over space and time. The remainder of the vine, i.e. the vine of the variables con-
ditioned under the value of the central location, is modelled as some k-dimensional
R-vine (a C-vine in our case). The structure of the first tree of a spatio-temporal vine
copula is illustrated in Figure 2. Every curved connection is modelled by the same
spatio-temporal copula Ch,t but with different spatial and temporal distances h and
t derived from the spatio-temporal locations involved. Combining the multivariate
copula with the margins, which are assumed to be stationary, yields a full multivari-
ate distribution of the neighbourhood of the spatio-temporal random field. This dis-
tribution can then be used to simulate, predict or analyse the observed phenomenon.
Quantile predictions can be made for any fraction p∈ (0,1) through equation 2. The
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Fig. 2 The first tree of a spatio-temporal vine copula for a neighbourhood of size 10 with 3 neigh-
bours in space and 3 instances in time (the same moment, one and two time instances before
indicated with 0,-1 and -2 respectively). Every curved connection is modelled by the same spatio-
temporal copula Ch,t but with different spatial and temporal distances h and t derived from the in-
dicated locations si, j, i ∈ {0,1,2,3}, j ∈ {0,−1,−2}. The remaining trees follow a 9-dimensional
C-vine.

expected value of the conditioned distribution can be calculated by equation 3. The
two predictors are given by

Ẑp(s0) = F−1(C−1(p|F
(
Z(s1)

)
, . . . ,F

(
Z(sk)

))
(2)

Ẑm(s0) =
∫

[0,1]

F−1(u) c
(
u|F
(
Z(s1)

)
, . . . ,F

(
Z(sk)

))
du (3)

where F denotes the cumulative distribution function of the stationary random field
and s1, . . . , sk are the spatio-temporal neighbours of s0. Even though not explicitly
stated, the copula C and its density c depend on the spatial and temporal distances
between s0 and its k-neighbours through the spatio-temporal bivariate copula in the
first tree.

3 Application to daily PM10 concentrations

The vine copula method is applied to a sample data set of daily mean PM10 mea-
surements across Europe, using rural background stations from 2005. The data is
publicly available through the AirBase1 database hosted by the European Environ-
mental Agency (EEA). Typically, the marginal distributions are unknown and have

1 http://www.eea.europa.eu/themes/air/airbase
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to be estimated as well. In order to not affect the copula by this estimation, we
use rank-order transformed observations (i.e. ui := rank(xi)/(n+1), where n is the
length of the sample). To infer on the spatial dependencies, a set of 40 spatial lag
classes is derived. Separate lag classes are filled with rank transformed data pairs
from the same day, the one and two preceding days resulting in a set of 120 spatio-
temporal lag classes. For every spatio-temporal lag, the best fitting copula from
several copula families (elliptical, Archimedean, copulas with cubic-quadratic sec-
tions including an asymmetric one) is selected based on their log-likelihood values.
These estimated copulas are then combined in a spatio-temporal bivariate copula
as described in Section 2.1. As to be expected, the spatial bivariate copula fitted
to rank transformed pairs measured the same day does not show any asymmetric
dependencies. However, the asymmetric copula family is preferred over the other
investigated families for some lags with pairs one day apart and dominates the con-
vex linear combination for data pairs two days apart.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
∆ = 0 t F t F F F F F F F F F F F F F F F F F F F Q Q Q F
∆ =−1 F F F F F F F F F F F F F A A A A F F F F A A A A A
∆ =−2 F F F F A A A A A A A A A A A A A A A A A Q Q Q Q Q

Table 1 The copula families with the highest log-likelihood values for the first 26 spatial lag
classes corresponding to distances up to 1000 km and three time instances. Abbreviations are as
follows: t =Student, F = Frank, A = asymmetric, Q = cubic-quadratic-sections. The vertical lines
indicate 100 km, 250 km, 500 km breaks

To build multiple samples of the stationary neighbourhoods, the data was ar-
ranged as spatial neighbourhoods and a random sample of 90 days for every station
was included in the following analysis to reduce unwanted autocorrelation effects.
This data is grouped in spatio-temporal neighbourhoods building the basis of the
10-dimensional vine copula. The fitted spatio-temporal bivariate copula is used in
the first tree (see Figure 1) to derive the 9 dimensional data set conditioned under the
one central location s0,0 (see Figure 2). The remaining trees consist of 36 bivariate
copulas and are iteratively estimated based on their maximum log-likelihood values.
To assess the quality of our fit, we calculated the overall log-likelihood and com-
pared it against simpler approaches. The log-likelihood value of our spatio-temporal
vine copula (72709) is about 35% larger than the fit of a Gaussian copula (53305)
which included 45 covariance parameters. Furthermore, the Gaussian copula does
not allow for asymmetric dependencies opposed to the vine copula including asym-
metric copulas.

To extend the validation of the fit beyond the log-likelihoods, we perform a cross
validation leaving the full time series of one station out after another and predicting
the expected value (equation 3), median and 95% quantile (equation 2 for p = 0.5
and p = 0.95) for every day during the year based on the conditional distribution
from the three spatial neighbours and their three temporal instances. Thus, the cross-
validation relies purely on spatial and spatio-temporal dependencies. To fully esti-
mate the desired indicators, the marginal distribution has to be fitted. The best fit is
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achieved for a generalized extreme value distribution GEV (µ,σ ,ξ ) with its param-
eters location, scale and shape set to µ = 13.94, σ = 8.54 and ξ = 0.20 respectively
(following the notation of the R-package evd [11]).

The full study is performed in the statistical computing environment and lan-
guage R [9] using the package spcopula [4] that connects and extends the pack-
ages spacetime [8], copula [12, 6] and CDVine [10]. The R-scripts are avail-
able on request from the authors.

4 Discussion

In the following, we will compare the copula approach with a spatio-temporal in-
terpolation procedure described in the recent ETC/ACM Technical Paper 2011/10
[3]. The method therein performing best, applies residual kriging assuming a met-
ric spatio-temporal covariance model (where 1 day ≈ 120 km) following a log-
transformation of the original measurements and detrending by a linear regression
with altitude and daily EMEP model predictions (Further details can be found in
[3].).

Table 2 Cross validation results for the expected value and median estimates following the vine
copula approach and the best performing method in [3] for comparison.

expec. value median metric cov. kriging
root mean sq. er. 11.2 12.08 9.84
bias -0.73 1.94 -0.24
mean abs. er. 6.95 6.87 5.66

Cross validation indicators for the predictions based on the conditional expected
value and the median following the vine copula approach are shown in Table 2 a
long with the values of the best performing method from [3]. Based on these num-
bers, no improvement could be achieved. However, the errors of the estimates based
on the conditional expected value are of the same order of magnitude. It has to be
noted that the neighbourhoods of the metric covariance model relying on the 100
nearest neighbours in a metric spatio-temporal space differs from the one underly-
ing the vine copula approach building on the three nearest neighbours in space and
three instances in time. The overall reproduction of the data set by the copula inter-
polation is rather good. The predicted median and 95%-quantile are almost precisely
exceeded by 50% and 5% of the original observations respectively. Looking into the
predictions of single stations reveals cases where the copula approach outperforms
kriging, but also versa. Two extreme scenarios are discussed in the following.

In Figure 3, a time series plot of a Finnish station roughly 600 km apart from
any other station is shown. In our application, the copula prediction (drawn in ma-
genta) is far above the real observations (drawn in red) while the metric covariance
kriging prediction (drawn in green) seems to represent the mean process. An ex-
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Fig. 3 A time series plot of a Finish station showing the 95%-quantile of the copula prediction
(cop 95q, blue), the conditional expected value estimate (cop Expec, magenta), the metric co-
variance kriging predictions (kriging 3D, green) and the original observed PM10 concentrations
(PM10, red).

planation might be given by the fact that the metric kriging model relies on the
nearest stations in time and space. In this specific neighbourhood and a temporal
scaling of 1 day≈120 km, the nearest neighbours are roughly dominated by a factor
of 10 through temporal instances. Thus, the predictions are similar to a temporal
moving window average of a very few spatial neighbours. In the copula approach,
we always rely on three nearest spatial neighbours and three instances in time. For
larger distances, the conditioning influence of these neighbours is rather weak and
the prediction value tends towards the expected value of the marginal distribution
(21.0 µg/m3 in our case) as the conditional density approximates a uniform distri-
bution.

Another extreme case is shown in Figure 4. Here, the vine copula approach out-
performs the 3D kriging approach for instance with respect to the station-wise root
mean squared error with 4.0 µg/m3 opposed to 5.4 µg/m3. Even though both pre-
dictors follow the shape of the observations, the kriging estimate is often consider-
ably above the observed concentrations. As this German measurement station is sit-
uated within a rather dense and dominating network, it closely follows the marginal
distribution and the copula seems to well capture the spatio-temporal dependencies.
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Fig. 4 A time series plot of a German station showing the 95%-quantile of the copula predic-
tion (cop 95q, blue), the conditional expected value estimate (cop Expec, magenta), the metric
covariance kriging predictions (kriging 3D, green) and the original observed PM10 concentrations
(PM10, red).

A potential advantage of the copula approach is the ease and flexibility with
which one can predict quantiles of the distribution. In general, the conditional dis-
tributions at unobserved locations derived from the vine copula are not restricted to
any specific distribution opposed to the kriging approach where every location is as-
sumed to follow a Gaussian distribution. The blue lines in Figures 3 and 4 showing
the 95%-quantile of the copula prediction are estimated with the same general equa-
tion 2 as the median. Deriving quantiles for the complete modelling approach in [3]
including log-transformations and detrending would require a simulation procedure.

5 Conclusion & Outlook

This paper reports on a early stage attempt to model spatio-temporal dependencies
with copulas, and exposes cases where predictions based on copulas are worse than
following a residual kriging approach as well as where the flexibility of the copula’s
dependence structures seems beneficial. The fully probabilistic nature of copulas al-
lows to predict different kinds of statistical values. Mean estimates can immediately
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be given alongside with quantile estimates. However, further research will be nec-
essary to fully identify the strengths and weaknesses of the vine copula approach in
comparison to kriging. The presented study includes effects of log-transformations
and detrending (altitude, EMEP model predictions) in the metric covariance kirging
procedure. Thus, the kriging approach relies on more information and their effect
on the predictions is hard to assess.

As illustrated in Figure 3, the assumption that the PM10 concentrations across
Europe follow the same distribution, i.e. that the random process has the same mean
at any location, seem not very well supported by the data. Further work will be
needed to address the issue of non-stationarity. Even though building higher dimen-
sional distributions as in the presented approach remains a challenge, theoretical
and software tools evolve to tackle these issues. Further developments will ease the
estimation and application of spatial and spatio-temporal copulas.
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