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The pair-copula interpolation in brevity

Capturing changing dependence structures

Describing dependence merely by correlation measures or covariance functions reduces
the dependence structure of two random variables to a single measure and introduces
strong simplifications. The Figure 1 illustrates how the dependence structure of two
locations changes over separation distance across the bivariate distribution. Therefore,
it can be desirable to model the full multivariate distribution of the observed process.
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Figure 1: The spatial copula for pairs of locations with different separation distances (in meter). Each
tile illustrates the strength of dependence over the full bivariate distribution (the copula’s density). The
values have been truncated at a level of 5.

Describing dependence with copulas

Copulas enable us to model any n-variate distribution H(x. ..., x,) by two distinct
parts: its n marginal distributions Fi(x), ..., Fs(x,) and the dependence structure of
the margins, its copula C(uy, ..., u,) (see [1]):

H(xi, - - %) = C(Fi(x), - - - Falxa))-

We picked up the idea of the flexible pair-copula construction (PCC; Aas et al. [2]) and
adapted it to the spatial framework. Our proposed procedure allows to describe spatial
multivariate dependence structures by decomposing them into a set of bivariate copulas.

Pair-copula interpolation vs. ordinary kriging

The application below (Figure 3) demonstrates the potential of the pair-copula interpo-
lation for a local neighbourhood of only 4 neighbours. Cross-validations proved that this
first attempt can already compete with ordinary kriging. The root mean square error for
the pair-copula interpolation turned out to be close to the one for ordinary kriging, but
the bias could be reduced by a factor of = 2.

The full distribution of each estimate provided by the pair-copula interpolation allows
for a better uncertainty analysis.

The pair-copula interpolation in more detail

Spatial copula

We developed a spatial copula Cj that is a convex combination of copulas. It approaches
a copula close to perfect positive dependence for small distances and the product copula
(mimicking independence) when the distance tends to the range up to which data are
spatially correlated. The convex combination of copulas allows us to mix copula families
according to the properties of different distances (as drawn in Figure 1).

Spatial pair-copula over 4 neighbours

We adapt the scheme of the canonical vine (Figure 2) for the spatial pair-copula. The
copulas of the first tree are replaced with a distance dependent spatial copufa. The full
5-dimensional copula G is then given by the product of all bivariate copulas.
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Figure 2: The spatial canonical vine structure. The copulas of the first tree are replaced by a distance
dependent spatial copula.

Pair-copula based interpolation

The random process H(xg, xq, .. -, x3) that we model describes the distribution of some
variable of interest for a single location and its 4 nearest neighbours. Assuming sta-
tionarity allows us to use the same marginal cumulative distribution function F for all
locations.

The random variable Z(s)) at an unobserved location s; follows the conditional distri-
bution H(xg|x1, . ..,x). The density of this distribution can be expressed in terms of a
conditional copula. Estimates can then be obtained by calculating the expected value:
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Meuse river bank

The zinc measurements of the Meuse data set were interpolated using the spatial pair-
copula interpolation over 4 neighbours. The margins are modelled by an extreme value
distribution. Figure 3 shows the interpolated grid along with the width of the 90%

confidence band in measurement and probability scale.
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Figure 3: The Meuse river data set interpolated with the proposed pair-copula interpolation (left) and
the width of the 90% confidence band in measurement scale (middle) and in probability scale (right).

Comparison of the log-likelihoods of the spatial pair-copula with fits of other
5-dimensional single family copulas shows a considerable higher value for the spatial
pair-copula. Providing the wrong distances to the spatial copula in the first tree reduces
the log-likelihood as well. Thus, the spatial pair-copula is a good fit within this set of
copulas.

Conclusion

The spatial pair-copula strengthens the influence of the spatial information compared
to other naive copula based approaches. It already sufficiently captures the dependence
structure of a local neighbourhood to compete with ordinary kriging. The provided con-
ditional distribution for each interpolation location allows for a sophisticated uncertainty
analysis of the estimates.
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