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Institute for Geoinformatics

University of Münster
http://ifgi.uni-muenster.de/graeler

http://ifgi.uni-muenster.de/graeler


Spatial Statistics -
a one hour

introduction

Benedikt Gräler
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Spatial Data

From a purely statistical perspective, spatial data is
multivariate data with special covariates: the coordinates.

Tobler’s first law of Geography states [10]:

Everything is related to everything else, but near
things are more related than distant things.
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Coordinate Reference System

We model the earth, but think in maps: locations are
projected from a curved surface in 3D to flat 2D space.

Be aware of geographic coordinates and different projections
that maintain angles, certain distances or area.

Imagine the following distances between:

the Fjord of Oslo (59.85 N 10.75 E) and Uppsala
(59.85 N 17.63 E) that are at the same latitude:

Degrees: 6.88
Great Circle: 385 km

Rate: 56 km/degree

the intersections of the Congo river with the equator
(0.00 N 18.21 E) and (0.00 N, 25.53 E):

Degrees: 7.32
Great Circle: 814 km

Rate: 111 km/degree
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CRS identifier

To distinguish different projections, a well prepared data set
comes with its coordinate reference system (CRS) as
metadata.

These are often encoded as

EPSG-codes (by the European Petroleum Survey Group)

proj4string

They define how the reference surface (sphere, ellipsoid) is
fixed to the real world (called the datum) and how the
projection (surface in 3D to 2D plane) is made.
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Projection
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Point Patterns

Records of locations of events are referred to as
Point Patterns (e.g. locations of earthquakes).

Adding an attribute (e.g. magnitude) to the raw locations
generates a marked point pattern.
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Lattice

Data collected per region is referred to as lattice data (e.g.
number of birth per county).

These values are true per region, but generally not
observable at each point in that region.

Number of thousand births 1974−1978
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Fields

Fields are understood as continuously spreading over space
(e.g. temperature recordings) and typically observed at a set
of distinct locations and illustrated as interpolated maps.
Typically, fields are modelled as a realisation of a spatial
random field.

obs. zinc concentrations
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Transitions between data types

Points in a point pattern can be counted per pre-defined
regions resulting in a lattice (earthquakes per region).

Smoothing techniques can generate a point density out
of a point pattern resulting in a field (density of
earthquakes).

Fields can be aggregated to regions resulting in a lattice
(average temperature per federal state).
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Motivation

a better understanding of the observed phenomenon

prediction at unobserved locations

prediction of the future

studying driving factors
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Longleaf pine trees

The following examples follow those from the spatstat
package [3]. More detailed explanations are found in [2].
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Uniform intensity

How many trees are there per square unit on average?

λ =
N

area

> summary(longleaf)

Marked planar point pattern: 584 points

Average intensity 0.0146 points per square metre

Coordinates are given to 1 decimal place

i.e. rounded to the nearest multiple of 0.1 metres

marks are numeric, of type ‘double’

Summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.00 9.10 26.15 26.84 42.12 75.90

Window: rectangle = [0, 200] x [0, 200] metres

Window area = 40000 square metres

Unit of length: 1 metre
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Inhomogeneous intensity

How does the intensity change throughout the study area?

quadrat counting the region is split into areas of equal size
and a uniform density is estimated per area

kernel smoothing the contribution of each point is spread
across its neighbourhood based on some kernel
density being properly rescaled
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Inhomogeneous intensity

How does the intensity change throughout the study area?

quadrat counting the region is split into areas of equal size
and a uniform density is estimated per area

kernel smoothing the contribution of each point is spread
across its neighbourhood based on some kernel
density being properly rescaled
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quadrat counting
> quadratcount(longleaf,nx=4,ny=4)

x

y [0,40] (40,80] (80,120] (120,160] (160,200]

(160,200] 20 25 37 7 26

(120,160] 25 34 50 51 27

(80,120] 29 22 15 31 37

(40,80] 26 12 24 19 8

[0,40] 18 14 12 8 7

x
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kernel smoothing

> density(longleaf)

Kernel smoothing
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Fitting Poisson processes I

Following the algorithm by [4], we seek a model where the
intensity λ is log-linear in the parameter θ:

log
(
λθ(x, y)

)
= θ · f(x, y)

A model fit with f being a simple linear model of the
coordinates, is obtained through

> modelLl <- ppm(longleaf, ~x+y)

> modelLl

Nonstationary Poisson process

Trend formula: ~x + y

> AIC(modelLl)

6077
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Fitting Poisson processes II

A model with f being a polynomial function can be fitted
through:

> modelLl <- ppm(ppLl, ~polynom(x, y, 3))

> modelLl

Nonstationary Poisson process

Trend formula: ~polynom(x, y, 3)

> AIC(modelLl)

6027
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Fitting Poisson processes III

Kernel smoothing
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The fitted Poisson process
Now that the process is fitted, sampling can take place:

rpoispp(lambdaFun, lmax=0.03, win=owin(c(0,200),c(0,200)))

Kernel smoothed sample
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Additional options

intensity based on covariates (e.g. elevation)

intensity per category → multiple point process
(e.g. sapling vs. adult)

interpoint interactions

modelling of marks: (L, M|L), (M, L|M), (L,M)

testing for independence

GOF testing
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intensity per category → multiple point process
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Sudden infant death syndrome - North Carolina

The following examples follow these of the spdep package
and its vignettes [5].

Number of thousand births 1974−1978
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Expected counts - probability map

Assuming Poisson distributions with mean values set to the
expected number of cases ec per county based on the
number of births ec(county) = NBirth · rate, the cumulated
density of the observed values is derived.
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CAR models I

The motivation of a conditional autoregressive model is
given by the conditional distribution

f
(
z(si)|{z(sj) : j 6= i}

)
=

1

τi
√

2π
exp

(
−
(
z(si)− θi({z(sj) : j 6= i})

)2
2τ2i

)

with

θi({z(sj) : j 6= i}) = µi +
n∑
j=1

cij
(
z(sj)− µj

)
while (cij)ij with cij = 0 unless the locations si and sj are
pairwise dependent, cijτ

2
i = cjiτ

2
j and cii = 0. τ2i .
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CAR models II

The process Z can then be modelled as

Z ∼ Gau
(
µ, (I− C)−1M

)
Z(si) = µi +

n∑
j=1

cij
(
Z(sj)− µj

)
+ νi

with ν ∼ Gau(0,M
(
I− Ct)

)
while M = diag(τ21 , . . . , τ

2
n),

C = (cij)ij .
Typically, only a small number of conditioning sites is used
assuming the Markov property

f
(
z(si)|{z(sj) : j 6= i}

)
= f

(
z(si)|{z(sj) : j ∈ Ni}

)
with Ni being the index set of selected neighbouring
locations.
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CAR Example: SIDS in North Carolina I

Freeman-Tukey transformed data
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CAR Example: SIDS in North Carolina II

Z ∼ Gau
(
µ, (I− C)−1M

)
We assume a constant mean µ = m. The neighbourhood
sets of the Markov Random Field are based on the distance
between centroids of the counties (≤ 30 miles).
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CAR Example: SIDS in North Carolina III

The spatial dependence matrix C is modelled as

cij :=

{
φ · minj∈Ni,i=1,...,n(dij)

dij
·
√

nj

ni
, j ∈ Ni

0, j /∈ Ni

and the conditional variance by

τ2i :=
τ2

ni

such that cijτ
2
j = cjiτ

2i and M = diag(τ21 , . . . , τ
2
n).

The set of parameters is (m,φ, τ).
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CAR Example: SIDS in North Carolina IV

The call

car <- spautolm(ft.SID74 ~ 1, data=mdata.4,

listw=sids.nhbr.listw.4,

weights=BIR74, family="CAR")

summary(car)

yields estimates: m̂ = 2.84, φ̂ = 1.73 and τ̂ = 36.16
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CAR Example: SIDS in North Carolina V

Predicted transformed data
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SAR models

A simultaneous autoregressive model is given by

Z ∼ Gau
(
µ, (I− B)−1Λ(I− Bt)−1

)
Z(si) = µi +

n∑
j=1

bij
(
Z(sj)− µj

)
+ εi

with ε ∼ Gau(0,Λ
)
, B = (bij)ij while bii = 0 and bij

captures the dependence of location si on sj . It is not
necessarily bij = bji, but (I −B)−1 is assumed to exist.
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SAR Example: SIDS in North Carolina I

Z ∼ Gau
(
µ, (I− B)−1Λ(I− Bt)−1

)
We assume again a constant mean µ = m.
The spatial dependence matrix B is modelled as

bij := φ
1

dij ·
∑

j∈Ni

1
dij

and the variance by

σ2i :=
σ2

ni

such that Λ = diag(σ21, . . . , σ
2
n).

The set of parameters is (m,φ, σ).
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SAR Example: SIDS in North Carolina II

The call

sar <- spautolm(ft.SID74 ~ 1, data=mdata.4,

listw=sids.nhbr.listw.4,

weights=BIR74, family="SAR")

summary(sar)

yields estimates: m̂ = 2.94, φ̂ = 0.8683 and σ̂ = 35.55
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SAR Example: SIDS in North Carolina III

Predicted transformed data
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Random Fields

The following examples follow these of the gstat package [8]
and the book [6].

Heavy metal concentrations in the soil along the Meuse
riverbank have been sampled.

How do the concentrations on the full grid look like?

obs. zinc concentrations
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Stationarity and Isotropy

stationarity The process ”looks” the same at each location
(e.g. mean and variance do not change from
east to west)

isotropy The dependence between locations is
determined only by their separating distance
neglecting the direction (e.g. locations 2 km
apart along the north-south axis are as
correlated as stations 2 km apart along the
east-west axis)

Some tricks exist to weaken these assumptions (e.g. rotating
and rescaling coordinates).
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Variograms I

The dependence across space of a random field Z is assessed
using a variogram γ:

γ(h) =
1

2
E
(
Z(s)− Z(s + h)

)2
the empirical estimator looks like

γ̂(h) =
1

2|Nh|
∑

(i,j)∈Nh

(
Z(si)− Z(sj)

)2
while Nh = {(i, j) : h− ε ≤ ||si − sj || ≤ h+ ε}
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Variograms II

The sample variogram is obtained through

vgmMeuse <- variogram(zinc~1, meuse)
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Variograms III

And a theoretical variogram model can be fitted

> head(vgm())

short long

1 Nug Nug (nugget)

2 Exp Exp (exponential)

3 Sph Sph (spherical)

4 Gau Gau (gaussian)

5 Exc Exclass (Exponential class)

6 Mat Mat (Matern)

> vgmModelMeuse <- fit.variogram(vgmMeuse,

vgm(0.6, "Sph", 1000, 0.1))

vgmModelMeuse

model psill range

1 Nug 24813.21 0.0000

2 Sph 134753.99 831.2953
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Variograms IV
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Kriging I

Certain variogram models can be used to parametrize a
covariance matrix for a Gaussian random field over a finite
set of locations s1, . . . , sn:

Z ∼ Gau
(
µ,Σ

)
while Σ = (σ2ij)ij and σ2ij = σ2 − γ(||si − sj ||), 1 ≤ i, j ≤ n
with σ2 = Var

(
Z(s)

)
, µ = (µ1, . . . , µn).

Predictions can be made using matrix inversion and matrix
multiplications.
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Kriging II

krige(zinc~1, meuse, meuse.grid, model=vgmModelMeuse)

obs. zinc concentrations
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Kriging III

The model quantifies how uncertain it is about the estimates
through the kriging variance:
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Spatial Data

Point Patterns

Lattice

Fields

Modelling

Point Patterns

Lattice

Random Fields

Spatio-Temporal
Extensions

Spatio-Temporal
Kriging

Copulas

Spatial Copulas

References

43

Overview of kriging types

simple kriging the mean value is known

ordinary kriging prediction based on coordinates

universal kriging prediction based on coordinates and
additional regressors (distance to the river)

co-kriging the cross-variogram between two variables is as
well exploit (zinc and lead)
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Spatio-Temporal Data

S × T works as a data structure, but modelling needs to
consider special properties of the product of space and time.

direction Today’s values influence tomorrow, but will not
take effect on yesterday’s values.

anisotropy What is the equivalent in terms of dependence
of 1 m separation in seconds or minutes?

The easiest way to think of spatio-temporal data is as time
slices - but this neglects the temporal dependence.

After modelling temporal trend or periodicities, the residuals
might be modelled as a spatio-temporal random field.
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The spatio-temporal variogram

Extending the variogram to a twoplace function for
spatio-temporal random fields Z(s, t):

γ(h, u) = E
(
Z(s, t)− Z(s + h, t + u)

)2
at any location (s, t). And empirical version

γ̂(h, u) =
1

2|Nh,u|
∑

(i,j)∈Nh,u

(
Z(si, ti)− Z(sj , tj)

)2

while Nh,u =

{
(i, j)

∣∣∣∣ h− εs ≤ ||si − sj || ≤ h+ εs
u− εt ≤ ti − tj ≤ u+ εt

}
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Spatio-Temporal Variogram Models I

Modelling dependence over space differently from the
dependence over time yields another degree of freedom.

metric the temporal component is adjusted using only
an anisotropy correction

γm(h, u) = γj(
√
h2 + (κ · u)2)

separable spatial and temporal component are added up
neglecting interactions between space and time

γsep(h, u) = nug · 1h>0,u>0

+ sill ·
(
γs(h) + γt(u)− γs(h)γt(u)

)
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Spatio-Temporal Variogram Models II

product-sum a product interaction term is added to the
separable model

γps(h, u) = nug · 1h>0,u>0

+ γs(h) + γt(u)− kγs(h)γt(u)

The parameter k needs to fulfil
0 < k ≤ 1/(max(sills, sillt)).

sum-metric the covariance structure is composed out of
spatial and temporal components added with a
metric model capturing interactions

γsm(h, u) = γs(h)+γt(u)+γj(
√
h2 + (κ · u)2)
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Example

A set of spatially spread time series of daily measurements:
what does the random field look like all over Germany?
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Spatio-Temporal Sample Variogram
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variogram of the sum-metric model
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variogram of all spatio-temporal models

sample metric separable
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kriged map for 10 days
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What if the world happens to be non-Gaussian?
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Bivariate Copulas I

Copulas allow to model dependencies much more detailed
than a typical correlation value.

Instead of a single value, a full distribution is fitted
describing dependence.
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Bivariate Copulas II
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Bivariate Copulas III
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See the copulatheque for further interactive examples.

http://ifgi.uni-muenster.de/~b_grae02/indexCopulatheque.html
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Sklar’s Theorem

The power of copulas originates from Sklar’s Theorem [9]:

Any multivariate distribution H can be decomposed into its
marginal distribution functions F1, . . . , Fd and its copula C:

H(x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
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Strength and Shape changes with distance

The Bivariate Spatial Copula is a convex combination of
bivariate copula families parametrised by distance.
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Spatial Vine Copulas

A Vine Copula connects bivariate copulas to multivariate
copulas [1, 7].
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Spatial Vine Copula Prediction
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