Vine Copulas for Spatial Interpolation

4th Workshop on Vine Copula Distributions and Applications: Vines and Spatial Applications
12.05.2011

Benedikt Gräler
Institute for Geoinformatics
University of Münster
http://ifgi.uni-muenster.de/graeler
Spatially distributed data is usually collected at a discrete set of locations in space only.

Maps are often designed to provide information of the full random field Z at any location $s \in S$ based on some interpolation algorithm.

In geostatistics, we treat the observations as realisations of some spatial random field $Z : S \to \mathbb{R}$ over some spatial region S.
Tobler’s first law of geography

Waldo Tobler (1970)1:
"Everything is related to everything else, but near things are more related than distant things."

The most simple idea is the inverse distance weighted interpolation that estimates the value at an unobserved location by the linear combination of all measurements weighted by the inverse of their distance to the unobserved location.

The most commonly used method (or set of methods) is \textit{kriging}.

Kriged estimates are linear combinations of all values; weights are chosen based on covariances of all pairs of locations (BLUE).

The assumption of stationarity across the region S allows to consider lag classes by distance instead of single locations in space.
Our approach

- using the full distribution of the observed phenomenon of a local neighbourhood
Our approach

- using the full distribution of the observed phenomenon of a local neighbourhood
- each observed location \(s_0 \in S \), is grouped with its four nearest neighbours \(\{s_1, s_2, s_3, s_4\} \subset S \) to generate a five dimensional sample: \((X_0, X_1, X_2, X_3, X_4)\)
Our approach

- using the full distribution of the observed phenomenon of a local neighbourhood
- each observed location \(s_0 \in S \), is grouped with its four nearest neighbours \(\{s_1, s_2, s_3, s_4\} \subseteq S \) to generate a five dimensional sample: \((X_0, X_1, X_2, X_3, X_4)\)
- an estimate is calculated from the conditional distribution at an unobserved location conditioned under the values of its neighbourhood
Our spatial pair-copula

We decompose the five dimensional distribution into its marginal distribution F (identical for all 5 margins) and a vine copula:

\begin{figure}
\centering
\includegraphics[width=\textwidth]{vine-copula-diagram.png}
\caption{Modified canonical vine from [1].}
\end{figure}
Accounting for distance

Thinking of pairs of locations we assume . . .

distance has a strong influence on the strength of dependence

dependence structure is identical for all neighbours, but might change with distance

stationarity and build k lag classes by distance and estimate a bivariate copula $c_{j,\tau(h)}(u,v)$ for each lag class $[0,l_1),[l_1,l_2), \ldots, [l_{k-1},l_k)$

The function $\tau(h)$ maps distances to a set of estimated parameters.
Density of the spatial copula

The density of the \textit{bivariate spatial copula} is then given by a convex combination of bivariate copula densities:

\[
c_h(u, v) := \begin{cases}
 c_{1, \tau(h)}(u, v) & , 0 \leq h < l_1 \\
 (1 - \lambda_2)c_{1, \tau(h)}(u, v) + \lambda_2 c_{2, \tau(h)}(u, v) & , l_1 \leq h < l_2 \\
 \vdots & \\
 (1 - \lambda_k)c_{k-1, \tau(h)}(u, v) + \lambda_k \cdot 1 & , l_{k-1} \leq h < l_k \\
 1 & , l_k \leq h
\end{cases}
\]

where \(\lambda_j := \frac{h - l_{j-1}}{l_j - l_{j-1}} \).
Estimating tree 2 to 4

The remaining copulas are estimated as usual over the five dimensional sample:

Figure: Modified canonical vine from [1].
The full five dimensional copula density

We get the full density

\[c_h(u_0, u_1, \ldots, u_4) = \prod_{i=1}^{4} c_{h_{0i}}(u_0, u_i) \cdot \prod_{j=2}^{4} c_{1j|0}(F_{1|0}, F_{j|0}) \]

\[\cdot \prod_{m=3}^{4} c_{2m|01}(F_{2|01}, F_{m|01}) \cdot c_{34|012}(F_{3|012}, F_{4|012}) \]

and the conditional density

\[c_h(u_0|u_1, \ldots, u_4) := \frac{c_h(u_0, u_1, \ldots, u_4)}{\int_{0}^{1} c_h(v, u_1, \ldots, u_4)dv} \]

where \(h := (h_{01}, h_{02}, h_{03}, h_{04}) \) is the vector of separating distances and \(u_i := F(x_i) \).
Spatial Pair-Copula interpolation

The estimate can be obtained as the expected value

\[\hat{x}_0 = \int_0^1 F^{-1}(v) \cdot c_h(v|u_1, \ldots, u_4) \, dv \]

or by calculating the median

\[\hat{x}_0 = F^{-1}(C^{-1}_h(0.5|u_1, \ldots, u_4)) \]

where \(h := (h_{01}, h_{02}, h_{03}, h_{04}) \) and \(u_i := F(x_i) \) as before.
R-package spcopula

The developed methods are implemented as R-scripts and will be bundled in the package *spcopula*.

It extends and combines the R-packages *sp* and *copula*.

Look for the project *spcopula* at R-Forge.
The Meuse river I

data measurements of four heavy metals in soil samples at a small section of the river Meuse at the Dutch-Belgian border

task interpolation of the zinc measurements for the whole study area

margins Fréchet distribution

estimation Kendall’s tau estimator, comparison of likelihoods

bivariate spatial copula mixture of Gumbel and Clayton copulas

spatial pair-copula mainly from the Gumbel family; one copula with cubic-quadratic-sections [2]
The Meuse river II

The bivariate spatial copula for the Meuse data set:
Vine Copulas for Spatial Interpolation

Benedikt Gräler

Problem

Solution

Bivariate Spatial Copula
Spatial Pair-Copula interpolation
Software

Application

Meuse river

Goodness of fit

Conclusion & Outlook

References

The Meuse river III
Comparing Likelihoods

<table>
<thead>
<tr>
<th>5-dim Copula</th>
<th>Log-Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial Pair-Copula</td>
<td>203</td>
</tr>
<tr>
<td>... with rev. distances</td>
<td>187</td>
</tr>
<tr>
<td>Gaussian</td>
<td>174</td>
</tr>
<tr>
<td>Gumbel</td>
<td>152</td>
</tr>
<tr>
<td>Clayton</td>
<td>138</td>
</tr>
<tr>
<td>Frank</td>
<td>135</td>
</tr>
</tbody>
</table>

Goodness of Fit

- Gaussian: 174
- Gumbel: 152
- Clayton: 138
- Frank: 135

Application

- Meuse river
Cross validation

estimates vs. measurements
The most popular spatial interpolation

pair-copula interpolation vs. kriging\(^2\): bias could be reduced by a factor of 2

\(^2\)using the R-package gstat
pair-copula interpolation vs. kriging2:

- **bias** could be reduced by a factor of 2
- **RMSE** was slightly higher, but appeared to be smaller for some random sub samples from the study area

2using the R-package gstat
The most popular spatial interpolation

pair-copula interpolation vs. kriging\(^2\):

- **bias** could be reduced by a factor of 2
- **RMSE** was slightly higher, but appeared to be smaller for some random sub samples from the study area

probabilistic advantage sophisticated uncertainty analysis, drawing random samples, . . .

\(^2\)using the R-package *gstat*
Further extensions

- including covariates
Further extensions

- including covariates
- complex neighbourhoods (e.g. closest neighbours in the north, east, south and west)
Further extensions

- including covariates
- complex neighbourhoods (e.g. closest neighbours in the north, east, south and west)
- accounting as well for direction
Further extensions

- including covariates
- complex neighbourhoods (e.g. closest neighbours in the north, east, south and west)
- accounting as well for direction
- temporal dependence (e.g. 2-dim convex combination of bivariate copulas)
Further extensions

- including covariates
- complex neighbourhoods
 (e.g. closest neighbours in the north, east, south and west)
- accounting as well for direction
- temporal dependence
 (e.g. 2-dim convex combination of bivariate copulas)
- include further copula families
Further extensions

- including covariates
- complex neighbourhoods (e.g. closest neighbours in the north, east, south and west)
- accounting as well for direction
- temporal dependence (e.g. 2-dim convex combination of bivariate copulas)
- include further copula families
- improve performance