Covariates in single tree Spatio-Temporal Vine Copulas

Spatial Copula Workshop 2014
September 22, 2014

Benedikt Gräler
Institute for Geoinformatics
University of Münster
http://ifgi.uni-muenster.de/graeler
spatio-temporal data

Typically, spatio-temporal data is given at a set of discrete locations \(s_i \in S \) and time steps \(t_j \in T \).

We desire a bivariate spatio-temporal random field \((Z, Y) : \Omega \times S \times T \to \mathbb{R}^2\) modelling the process at any location \((s, t)\) in space and time.

Here, we look at daily fine dust concentrations across Europe \((PM_{10})\) measured at stations \((Z)\) and modelled \((Y)\) through the European Monitoring and Evaluation Programme \((EMEP)\).
basic set-up & assumptions

We assume

1. that the marginal distribution can be parametrized by location \(s \in S \): \(F_s \) and \(G_s \)
2. stationarity on the copula scale
3. that the dependence does not change within the study area.

This allows us to consider lag classes by distances in space and time on the copula scale instead of single locations in space.
The classical geostatistical approach

A multivariate Gaussian distribution is assumed where

- a variogram function can be used to parametrize the (large) covariance matrix by distance
The classical geostatistical approach

A multivariate Gaussian distribution is assumed where

- a variogram function can be used to parametrize the (large) covariance matrix by distance
- the mean vector is set to the observed values
Our approach

- using the full distribution of the observed phenomenon of a local neighbourhood
Our approach

- using the full distribution of the observed phenomenon of a local neighbourhood
- each observed location \((s_0, t_0) \in (S, T)\), is grouped with its nine strongest correlated neighbours.
Our approach

- using the full distribution of the observed phenomenon of a local neighbourhood
- each observed location \((s_0, t_0) \in (S, T)\), is grouped with its nine strongest correlated neighbours.
- an estimate is calculated from the conditional distribution at an unobserved location conditioned under the values of its spatio-temporal neighbourhood and covariate yielding an eleven dimensional distribution.
A metric spatio-temporal neighbourhood

Problem

Solution

Bivariate Spatial Copula
Spatio-Temporal Covariate Vine-Copula Software

Application to \(PM_{10} \)
Fitment
Goodness of fit

Conclusion & Outlook
The spatio-temporal covariate vine-copula

We decompose the eleven dimensional distribution into it’s marginal distribution F (identical for all 10 margins), the marginal distribution of the covariate G and a vine copula:

On the first tree, we use a spatio-temporal bivariate copula accounting for spatial and temporal distance and the copula relating the variable of interest and its covariate. The following trees are modelled from a wide set of ”classical” bivariate copulas.
Accounting for spatial distance

Thinking of pairs of locations \((s_1, t_1), (s_2, t_2)\) we assume . . .

distance has a strong influence on the strength of dependence
Accounting for spatial distance

Thinking of pairs of locations \((s_1, t_1), (s_2, t_2)\) we assume . . .

distance has a strong influence on the strength of dependence

dependence structure is identical for all neighbours, but might change with distance
Accounting for spatial distance

Thinking of pairs of locations \((s_1, t_1), (s_2, t_2)\) we assume . . .

- **distance** has a strong influence on the strength of dependence

- **dependence structure** is identical for all neighbours, but might change with distance

- **stationarity** on the copula scale and build \(k\) lag classes by spatial distance for each temporal distance \(\Delta\) and estimate a bivariate copula \(c_j^\Delta(u, v)\) for all lag classes \([0, l_1), [l_1, l_2), \ldots, [l_{k-1}, l_k)\} \times \{0, 1, 2\}\)
Density of the spatial and spatio-temporal copula

The density of the *bivariate spatial copula* is then given by a convex combination of bivariate copula densities:

\[
c_h^\Delta(u, v) := \begin{cases}
 c_{1,h}(u, v) & , 0 \leq h < l_1 \\
 (1 - \lambda_2)c_{1,h}(u, v) + \lambda_2 c_{2,h}(u, v) & , l_1 \leq h < l_2 \\
 \vdots & \\
 (1 - \lambda_k)c_{k-1,h}(u, v) + \lambda_k \cdot 1 & , l_{k-1} \leq h < l_k \\
 1 & , l_k \leq h
\end{cases}
\]

where \(\lambda_j := \frac{h-l_{j-1}}{l_j-l_{j-1}} \).

The density of the *bivariate spatio-temporal copula* \(c_{h,\Delta}(u, v) \) is then given by a convex combination of bivariate spatial copula densities in an analogous manner.
Adding the Covariate

Tree 1 (Spatio-Temporal Tree):

Tree 2:

Tree 3:

Tree 4:
The full density I

We get the full 11-dim copula density as a product of all involved bivariate densities:

\[
c_h^\Delta (u_0, v_0, u_1, \ldots, u_d) = c_{ZY}(u_0, v_0) \cdot \prod_{i=1}^{d} c_{h(0,i)}(u_0, u_i) \cdot \prod_{i=1}^{d} c_{Y,i|0}(u_{Y|0}, u_{i|0})
\]

\[
\cdot \prod_{j=1}^{d-1} \prod_{i=1}^{d-j} c_{j,j+i|Y,0,...,j-1}(u_{j|Y,0,...,j-1}, u_{j+i|Y,0,...,j-1})
\]

where \(v_0 = G_0(Y(s_0, t_0)) \) with \(G_0, u_i = F_i(Z(s_q, t_r)) \) for \(0 \leq i \leq d \) with \((s_q, t_r)\) denoting the \(i \)-th strongest correlated neighbour of \((s_0, t_0)\) with \(F_i = F_{q,r} \) and \ldots
The full density II

\[u_{Y|0} = F_{Y|0}(v_0|u_0) = \frac{\partial C_{Z,Y}(u_0, v_0)}{\partial u_0} \]

\[u_{i|0} = F_{i|0}(u_i|u_0) = \frac{\partial C_{h(0,i)}(u_0, u_i)}{\partial u_0} \]

and

\[u_{j+i|Y,0,...,j-1} = F_{j+i|Y,0,...,j-1}(u_{j+i}|v_0, u_0, \ldots, u_{j-1}) \]

\[= \frac{\partial C_{j-1,j+i|Y,0,...,j-2}(u_{j-1}|Y,0,...,j-2, u_{j+i}|Y,0,...,j-2)}{\partial u_{j-1}|Y,0,...,j-2} \]

for \(1 \leq j < d\) and \(0 \leq i \leq d - j\).
Spatio-Temporal Covariate Vine-Copula interpolation

The estimate can be obtained as the expected value

\[\hat{Z}_m(s_0) = \int_{\mathbb{R}} z \cdot f_h^\Delta(z | y_0, z_1, \ldots, z_d) \, dz \]

\[= \int_{[0,1]} F_0^{-1}(u) \cdot c_h^\Delta(u | v_0, u_1, \ldots, u_d) \, du \]

or by calculating any percentile \(p \) (i.e. the median)

\[\hat{Z}_p(s_0) = F_0^{-1}(C_h^\Delta^{-1}(p | v_0, u_1, \ldots, u_d)) \]
The developed methods are implemented as R-scripts and are bundled in the package **spcopula** available at R-Forge (briefly presented later today).

The package spcopula extends and combines the R-packages *VineCopula*, *spacetime* and *copula*.
We applied our method to daily mean PM_{10} concentrations observed at 194 rural background stations for the year 2005 (70810 obs.).

The data is hosted by the European Environmental Agency (EEA) originally provided by the member states and freely available at http://www.eea.europa.eu/themes/air/airbase. As covariate, daily mean PM_{10} concentrations derived from the EMEP model are included.
The marginal distributions

We fit extreme value distributions for each location $s \in S$ based on the time series leading to margins F_s and G_s.

For the interpolation scenario we use

1. a linear model incorporating the locations’ coordinates and altitude followed by an inverse distance weighted interpolation of the residuals . . .

2. inverse distance weighted interpolation . . . of the local neighbourhood’s marginal parameters.

Histogram of daily mean PM$_{10}$ measurements
The covariate copula

correlation structure of PM10 and EMEP over time

day in 2005

Kendall's tau

-0.2 0.2 0.4 0.6

0 100 200 300

Joe
Frank
Gumbel
Clayton
Student
Gauss

copula family

Gumbel
Student
Gauss

PM_{10}

Conclusion & Outlook

Fitment
Goodness of fit
A look inside the spatio-temporal copula I

Spatio–Temporal Dependence Structure

- same day
- 1 day before
- 2 days before
- 3 days before
- 4 days before

distance [km]

correlation [Kendall’s tau]

Problem

Solution

Bivariate Spatial Copula
Spatio–Temporal Covariate Vine-Copula
Software

Application to PM$_{10}$

Fitment
Goodness of fit

Conclusion & Outlook
A look inside the spatio-temporal copula II

same day, 230 km
A look inside the spatio-temporal copula III

two days, 500 km
A look inside the spatio-temporal copula IV

<table>
<thead>
<tr>
<th>ID</th>
<th>mean dist. [km]</th>
<th>1 2 3 5 6 7 22 23 25 26 27 28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25 61 99 177 216 255 843 881 961 999 1038 1079</td>
</tr>
</tbody>
</table>

Δ = 0	t G t ... t G ... G F N
Δ = −1	G ... G F ... F N
Δ = −2	G ... G N ... G
Δ = −3	G ... G J ... J G G
Cross validation

<table>
<thead>
<tr>
<th>Dependence model</th>
<th>Margin</th>
<th>RMSE</th>
<th>MAE</th>
<th>ME</th>
<th>COR</th>
</tr>
</thead>
<tbody>
<tr>
<td>STCV \hat{Z}_m</td>
<td>local GEV</td>
<td>8.53</td>
<td>4.61</td>
<td>-0.05</td>
<td>0.84</td>
</tr>
<tr>
<td>Gaussian STCV \hat{Z}_m</td>
<td>local GEV</td>
<td>8.65</td>
<td>4.59</td>
<td>0.08</td>
<td>0.83</td>
</tr>
<tr>
<td>STCV \hat{Z}_m</td>
<td>lm+IDW GEV</td>
<td>10.12</td>
<td>5.79</td>
<td>0.17</td>
<td>0.76</td>
</tr>
<tr>
<td>STCV \hat{Z}_m</td>
<td>IDW GEV</td>
<td>10.82</td>
<td>6.26</td>
<td>0.14</td>
<td>0.72</td>
</tr>
<tr>
<td>metric res. kriging</td>
<td>log linear reg.</td>
<td>10.67</td>
<td>6.16</td>
<td>0.47</td>
<td>0.74</td>
</tr>
<tr>
<td>sp.-temp. vine \hat{Z}_m</td>
<td>global GEV</td>
<td>11.20</td>
<td>6.95</td>
<td>-0.73</td>
<td>NA</td>
</tr>
</tbody>
</table>
Box Plots of marginal reproduction

FI00351

DENW081

PM$_{10}$ [µg/m3]

0 20 40 60

obs. STCV Gauss STCV STCV Kriging

local GEV

PM$_{10}$ [µg/m3]

0 50 100 150

obs. STCV Gauss STCV STCV Kriging

local GEV

Fitment

Goodness of fit

Conclusion & Outlook

Problem

Solution

Bivariate Spatial Copula
Spatio-Temporal Covariate Vine-Copula
Software

Application to PM_{10}

ifgi Institute for Geoinformatics University of Münster

Benedikt Gräler

Covariates in single tree Spatio-Temporal Vine Copulas
A station in Finland

Problem

Solution

Application to PM_{10}

Fitment

Goodness of fit

Conclusion & Outlook
Conditional distribution functions

![Graph showing conditional distribution functions for daily mean PM$_{10}$ concentrations.](image)

Problem

- Bivariate Spatial Copula
- Spatio-Temporal Covariate Vine-Copula

Solution

- Conditional distribution functions
 - 2005–01–12: STCV
 - 2005–01–12: STCV lm+IDW
 - 2005–01–12: Gauss. STCV
 - 2005–10–07: STCV
 - 2005–10–07: STCV lm+IDW
 - 2005–10–07: Gauss. STCV

Application to PM_{10}

- Fitment

Conclusion & Outlook

- Goodness of fit
Benefits

richer flexibility due to the various dependence structures
Benefits

richer flexibility due to the various dependence structures
asymmetric dependence structures become possible
(temporal direction)
Benefits

richer flexibility due to the various dependence structures
asymmetric dependence structures become possible
(temporal direction)
probabilistic advantage sophisticated uncertainty analysis,
drawing random samples, ...
Further extensions

- larger neighbourhoods possibly using vine truncation techniques
Further extensions

- larger neighbourhoods possibly using vine truncation techniques
- include further copula families
Further extensions

- larger neighbourhoods possibly using vine truncation techniques
- include further copula families
- improve performance