Chapter 1 Copulas in Spatial Statistics

Summer School *GEOSTAT 2014,* Spatio-Temporal Geostatistics, 2014-06-19

> Benedikt Gräler http://ifgi.de/graeler Institute for Geoinformatics University of Muenster

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation Fitment Goodness of Fit

Conclusion &

What if the world happens to be non-Gaussian?

Copulas in Spatial Statistics

Benedikt Gräler

copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation Fitment Goodness of Fit

Conclusion & Outlook

Bivariate Copulas I

Copulas allow to model dependencies much more detailed than a typical correlation value.

Instead of a single value, a full distribution is fitted describing dependence.

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation Fitment

Goodness of Fit Conclusion & Outlook

Bivariate Copulas II

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation

Fitment Goodness of Fit

Conclusion & Outlook

Bivariate Copulas III

0.0 0.2 0.4 0.6 0.8 1.0

See the copulatheque for further interactive examples.

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation Fitment

Goodness of Fit Conclusion &

Outlook References

Behind the scenes - Sklar's Theorem

Every bivariate distribution H is composed out of some copula C and marginal distributions F_1 and F_2 :

$$H(x,y) = C(F_1(x), F_2(y))$$

Gaussian copula density

Frank copula density

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation Fitment

Goodness of Fit Conclusion & Outlook

Why is this useful?

Copulas in Spatial Statistics

Benedikt Gräler

Sklar's theorem allows us to model any multivariate distribution in two steps:

- 1 find marginal distribution functions using your favourite estimation technique that suite the data
- 2 find a copula that describes the dependence

This allows for a huge flexibility and a clear outline how to proceed.

See the interactive copulatheque on my website for more copula families.

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation Fitment

Goodness of Fit Conclusion & Outlook

Accounting for distance

Thinking of pairs of locations (s_i,s_j) we assume . . . distance has a strong influence on the strength of dependence

dependence structure is identical for all neighbours, but might change with distance

stationarity and build k bins by spatial distance and estimate a bivariate copula $c_j(u,v)$ for each bin $\big\{[0,l_1),[l_1,l_2),\ldots,\,[l_{k-1},l_k)\big\}$

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula

Spatial Vine Copula Software

Application to Nuclear Radiation Fitment Goodness of Fit

Conclusion & Outlook

Accounting for distance

Benedikt Gräler

ifgi
Institute for Geoinformatic:
University of Münster

Copulas in Spatial Statistics

Thinking of pairs of locations (s_i, s_j) we assume . . . distance has a strong influence on the strength of dependence

dependence structure is identical for all neighbours, but might change with distance

stationarity and build k bins by spatial distance and estimate a bivariate copula $c_j(u,v)$ for each bin $\big\{[0,l_1),[l_1,l_2),\ldots,\,[l_{k-1},l_k)\big\}$

Copulas

Bivariate Spatial Copula

Spatial Vine Copula Software

Application to Nuclear Radiation Fitment Goodness of Fit

Conclusion & Outlook

Accounting for distance

Copulas in Spatial Statistics

Benedikt Gräler

Thinking of pairs of locations (s_i, s_j) we assume . . .

distance has a strong influence on the strength of dependence

dependence structure is identical for all neighbours, but might change with distance

stationarity and build k bins by spatial distance and estimate a bivariate copula $c_j(u,v)$ for each bin $\big\{[0,l_1),[l_1,l_2),\ldots,\,[l_{k-1},l_k)\big\}$

Copulas

Bivariate Spatial Copula

Spatial Vine Copula Software

Application to Nuclear Radiation Fitment Goodness of Fit

Conclusion & Outlook

Density of the bivariate spatial copula

The density of the *bivariate spatial copula* is given by a convex combination of bivariate copula densities:

$$c_h(u,v) := \begin{cases} c_1(u,v) &, 0 \le h < l_1 \\ (1-\lambda_2)c_1(u,v) + \lambda_2c_2(u,v) &, l_1 \le h < l_2 \end{cases}$$

$$\vdots & \vdots$$

$$(1-\lambda_k)c_{k-1}(u,v) + \lambda_k \cdot 1 &, l_{k-1} \le h < l_k$$

$$1 &, l_k \le h$$

where $\lambda_j:=\frac{h-l_{j-1}}{l_j-l_{j-1}}$. Each tree has its own bivariate spatial copula where distance h relates the involved pairs of locations.

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula

Spatial Vine Copula Software

Application to Nuclear Radiation Fitment Goodness of Fit

Conclusion & Outlook

The spatial neighbourhood

Spatial tree 1: $Z(s_3)$ $Z(s_2)$ $C_{0,h(0,3)}$ $C_{0,h(0,2)}$ Z(s₀) C_{0,h(0,1)} $C_{0,h(0,4)}$ $Z(s_4)$ $Z(s_1)$

Copulas in Spatial **Statistics**

Benedikt Gräler

Copulas

Bivariate Spatial Copula

Spatial Vine Copula Software

Application to Nuclear Radiation

Fitment Goodness of Fit

Conclusion & Outlook

The upper trees

Copulas in Spatial Statistics

Benedikt Gräler

Using the bivariate spatial copula on the first tree, the sample conditioned on s_0 is obtained.

The next bivariate spatial copula uses the distances between locations (s_1, s_2) , (s_1, s_3) , ..., (s_1, s_d) .

A spatial binning allows to estimate the next bivariate spatial copula to generate the sample conditioned on s_0 and s_1 .

Copulas

Bivariate Spatial Copula

Spatial Vine Copula Software

Application to Nuclear Radiation Fitment Goodness of Fit

Conclusion &

References

:

Software

Application to Nuclear Radiation Fitment

Goodness of Fit
Conclusion &
Outlook

References

We get the full copula density as a product of all involved bivariate densities:

$$c_{\mathbf{h}}(u_0, \dots, u_d)$$

$$= \prod_{i=1}^{d} c_{h_0(i)}(u_0, u_i) \cdot \prod_{j=1}^{d-1} \prod_{i=1}^{d-j} c_{h_j(j+i)}(u_{j|0,\dots,j-1}, u_{j+i|0,\dots,j-1})$$

where
$$u_i = F_i(Z(s_i))$$
 for $0 \le i \le d$ and

$$u_{j+i|0,\dots,j-1} = F_{h_{j-1}(j+i)}(u_{j+i}|u_0,\dots,u_{j-1})$$

$$= \frac{\partial C_{h_{j-1}(j+i)}(u_{j-1|0,\dots,j-2},u_{j+i|0,\dots,j-2})}{\partial u_{j-1|0,\dots,j-2}}$$

Spatial vine copula interpolation

The estimate can be obtained as the expected value

$$\widehat{Z}_m(s_0) = \int_{[0,1]} F^{-1}(u) \ c_{\mathbf{h}}(u|u_1,\dots,u_d) \ du$$

or by calculating any percentile p (i.e. the median)

$$\widehat{Z}_p(s_0) = F^{-1}(C_{\mathbf{h}}^{-1}(p|u_1,\dots,u_d))$$

with the conditional density

$$c_{\mathbf{h}}(u|u_1,\ldots,u_d) := \frac{c_{\mathbf{h}}(u,u_1,\ldots,u_d)}{\int_0^1 c_{\mathbf{h}}(v,u_1,\ldots,u_d) dv}$$

and $u_i = F(Z(s_i))$ as before.

Copulas

Bivariate Spatial Copula

Spatial Vine Copula Software

Application to Nuclear Radiation

Goodness of Fit Conclusion & Outlook

R-package spcopula

Benedikt Gräler

Copulas in Spatial

Statistics

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to

Nuclear Radiation Fitment Goodness of Fit

Conclusion &

References

The developed methods are implemented as R-scripts and are bundled in the package spcopula available at R-Forge.

The package spcopula extends and combines the R-packages VineCopula, spacetime and copula.

Simulated nuclear radiation

Copulas in Spatial Statistics

Benedikt Gräler

The new method is applied to simulated nuclear radiation data mimicking an emergency scenario.

The data has been generated for the spatial interpolation comparison 2004 (SIC2004, [?]) with 200 data and 808 validation locations.

To better approximate stationarity, a quadratic trend surface has been fitted excluding the (two) extremes.

This has been published in Journal of Spatial Statistics [1].

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation

Fitment

Goodness of Fit

Conclusion & Outlook

The trend surface

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation

Fitment

Goodness of Fit Conclusion &

Outlook References

The marginal distribution

Figure: Histogram of the "observed" radiation values.

The empirical marginal distribution function has been used.

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation

Fitment

Goodness of Fit

Conclusion & Outlook

The bivariate spatial copulas I

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation

Fitment

Goodness of Fit

Conclusion & Outlook

The bivariate spatial copulas II

Copulas in Spatial Statistics

Benedikt Gräler

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation

Fitment

Goodness of Fit

Conclusion & Outlook

Interpolated grid

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Software

Bivariate Spatial Copula Spatial Vine Copula

Application to Nuclear Radiation

Fitment

Goodness of Fit Conclusion &

Outlook

Validation data set

808 locations have been hold back to assess the prediction quality.

approach	MAE	RMSE	ME	COR
spatial vine copula	14.5	67.6	-6.1	0.60
TG log-kriging	20.8	78.2	-2.1	0.39
residual kriging	21.1	75.6	5.2	0.43
best one in SIC2004	14.9	45.5	-0.5	0.84

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation

Fitment Goodness of Fit

Conclusion & Outlook

Reproduction of margins

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation

Fitment Goodness of Fit

Conclusion & Outlook

Uncertainty assessment

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation Fitment

Goodness of Fit

Conclusion & Outlook

Simulation

Predicting random quantiles from the spatial vine copula.

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Software

Bivariate Spatial Copula Spatial Vine Copula

Application to Nuclear Radiation

Fitment

Goodness of Fit

Conclusion & Outlook

Benefits

richer flexibility due to the various dependence structures

asymmetric dependence structures become possible (temporal direction)

probabilistic advantage sophisticated uncertainty analysis, drawing random samples, ...

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation Fitment Goodness of Fit

Conclusion &

Benefits

richer flexibility due to the various dependence structures asymmetric dependence structures become possible (temporal direction)

probabilistic advantage sophisticated uncertainty analysis, drawing random samples, . . .

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation

Goodness of Fit

Conclusion & Outlook

Benefits

richer flexibility due to the various dependence structures asymmetric dependence structures become possible (temporal direction)

probabilistic advantage sophisticated uncertainty analysis, drawing random samples, ...

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation Fitment

Goodness of Fit

Conclusion &

Copulas in Spatial Statistics

Benedikt Gräler

- including covariates(e.g. altitude, population, EMEP, . . .)
- flexible/complex neighbourhoods (e.g. by spatial direction, ...)
- larger neighbourhoods possibly using vine truncation techniques
- include further copula families
- improve performance

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation Fitment Goodness of Fit

Conclusion &

- Copulas in Spatial Statistics
- Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation Fitment

Goodness of Fit
Conclusion &
Outlook

- including covariates(e.g. altitude, population, EMEP, . . .)
- flexible/complex neighbourhoods (e.g. by spatial direction, ...)
- larger neighbourhoods possibly using vine truncation techniques
- include further copula families
- improve performance

- Copulas in Spatial Statistics
- Benedikt Gräler

- Copulas
- Bivariate Spatial Copula Spatial Vine Copula Software
- Application to Nuclear Radiation Fitment
- Conclusion & Outlook

- Goodness of Fit

- including covariates (e.g. altitude, population, EMEP, . . .)
- flexible/complex neighbourhoods (e.g. by spatial direction, ...)
- larger neighbourhoods possibly using vine truncation techniques

including covariates

(e.g. altitude, population, EMEP, . . .)

- flexible/complex neighbourhoods (e.g. by spatial direction, ...)
- larger neighbourhoods possibly using vine truncation techniques
- include further copula families
- improve performance

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation Fitment Goodness of Fit

Conclusion &

- Copulas in Spatial Statistics
- Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation

Goodness of Fit

Outlook

- including covariates(e.g. altitude, population, EMEP, . . .)
- flexible/complex neighbourhoods (e.g. by spatial direction, ...)
- larger neighbourhoods possibly using vine truncation techniques
- include further copula families
- improve performance

References I

Copulas in Spatial Statistics

Benedikt Gräler

Copulas

Bivariate Spatial Copula Spatial Vine Copula Software

Application to Nuclear Radiation

Fitment Goodness of Fit

Conclusion & Outlook

References

 Benedikt Gr\u00e4ler. Modelling skewed spatial random fields through the spatial vine copula. Spatial Statistics, 2014. available online, in pess.