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Abstract. Copulas are a statistical  concept  which allows for a novel ap-
proach to model dependencies of spatial and spatio-temporal variables. They 
capture  the  dependence  structure  of  a  multivariate  distribution  over  its 
whole range detached from its specific margins. In contrast to a single meas-
ure of association, this allows for varying strength of dependence throughout 
the multivariate distribution. Thus, copulas are capable of capturing many 
different (i.e. non-Gaussian) dependence structures and allow for asymmet-
ric dependencies which can be found in many natural processes. We applied 
this approach to data from the deforestation survey of the Brazilian Amazon 
in order to capture the dependence of deforestation on a selection of vari-
ables.

1 INTRODUCTION

Most techniques in classical geostatistics rely on the assumption of an 
underlying Gaussian process. The dependence of two or more variables is 
then usually modelled by a covariance matrix which reduces the dependen-
cies of pairs of margins to a single value. However, one can easily think of 
situations in which the dependence strength changes for different quantiles 
of  a  distribution.  Imagine,  for  instance,  Ozone  measurements  in  a  city. 
Moderate values are usually due to local conditions and will occur quite 
loosely across the city area whereas very high values typically depend on 
regional phenomena like very intense solar radiation or inversion. Redu-
cing the dependence of two measurement stations to their covariance and 
assuming the process to be Gaussian introduces errors which might have 
severe effects. 



Figure  1  illustrates  three  different  dependence  structures  of  bivariate 
samples which all have standard normal margins and exhibit a covariance 
of about 0.7. The concept of copulas is capable of capturing these non-
Gaussian dependence structures and resolves the Gaussian assumption. 

Figure 1: A comparison of different dependence structures with identical 
covariance (0.7) and standard normal distributed margins. In the  Gumbel 
case the scatter plot shows higher dependence in the upper-right corner in 
contrast to the Clayton plot which gets tighter in the lower-left corner. The 
plot of the bivariate normal distribution exhibits the characteristic elliptical 
shape.

2 COPULAS

The theory of copulas grounds on the theorem by Sklar  (Nelsen 2006,  
Sec. 2.3) stating that any  n-variate joint cumulative distribution function
H(x1, ..., xn) can be described by a copula C and the cumulative distribution 
functions of the margins F1, ..., Fn through

Thus, a copula captures the dependence structure detached from the mar-
gins and can be understood as cumulated distribution function in the unit 
hypercube. 

The set of known two dimensional families of copulas is vast and in-
cludes  well  established  distributions.  The bivariate  Student  and Normal 
distributions, for instance, belong to the family of elliptical copulas. When 
copulas are estimated there is no need to estimate the univariate distribu-
tions of the margins beforehand. The estimation procedure can simply be 
based  on  the  rank  transformed observations  of  each variable  because  a 
copula is invariant under strictly increasing transformations of its margins. 
The copula  densities  corresponding  to  the  scatter  plots  in  Figure  1  are 
drawn in Figure 2. The densities can be understood as strength of depend-

H x1 ,, x n=C F 1x1 , , F n xn.



ence. It is clearly visible that the three plots considerably differ in range 
and shape.

The  Gaussian  assumption  and  the  use  of  the  covariance  as  a  single 
measure  of  association  have  another  drawback.  The covariance  and the 
Gaussian dependence structure are by definition  symmetric in the sense 
that the variable X depends on Y in the same way as vice versa. Natural  
phenomena in contrast (typically including the temporal domain) do show 
asymmetric dependencies.  For instance,  monitoring data of the develop-
ment of a forest over time will show asymmetries as trees are much faster 
cut down than grown. Typically, the exposure of toxics is as well an asym-
metric process. The release of some toxic occurs usually all out of a sud-
den and reaches very fast high values in contrast to the decay that is often 
time consuming. Purely spatial data may exhibit asymmetric dependencies 
as well. These are often due to some spatial trend as prevailing air or water 
currents. Gneiting, Genton & Guttorp (2007) show that more realistic mod-
els,  in  particular  non-symmetric  covariance  models,  yield  more  reliable 
results. The class of asymmetric copulas is designed to capture these kinds 
of dependencies.

Figure 2: The densities of the underlying copulas of Figure 1.
Figure 3 illustrates a small pseudo sample and a scatter plot of the rank 

transformed variables with a temporal offset of one day. The distribution 
of points in the scatter plot is captured by a copula's density. The scatter 
plot of two rank transformed variables which exhibit a symmetric depend-
ence would be symmetric with respect  to  the principal  diagonal.  In our 
case, the black and grey shapes on top of the plots relate the prominent 
asymmetric regions to each other. The black elliptical regions have very 
low probability to see any point where as their symmetric counterpart, the 
grey ellipses, enclose some points. The two tetragons oppose as well two 
symmetric  counterparts  which  exhibit  different  frequencies.  Thus,  this 
bivariate  sample would be best  approximated by the asymmetric  copula 



whose  density  is  drawn  as  a  filled  contour  plot  on  the  right  side  of  
Figure 3.

Figure  3: An eleven day subset of a spatio-temporal pseudo sample of 
length  100 (left)  and its  corresponding  rank transformed scatter  plot  of 
pairs between location 1 and location 2 with a temporal offset of one day 
(middle). The density plot (right) describes the asymmetric copula which 
fits the data best.

A third issue that can be resolved when copulas are used to model data 
concerns  the  dependence  of  extreme  values.  The  Gaussian  dependence 
structure does not allow any tail dependence. That is, in the bivariate case, 
the conditional probability to observe an extremely small value in X under 
the assumption that Y is extremely small tends to zero as Y approaches its 
minimum:  

where F− and G− are the pseudo inverse functions of the cumulative dis-
tribution functions of X and Y respectively. The above limit inspects the 
lower tail dependence and can be defined analogously for the  upper tail  
dependence (Nelsen 2006, Sec. 5.4). This restriction may be too limiting 
for  data  related  to  natural  catastrophes  or  other  extreme events.  In  this 
case, it is advisable to use copulas that do exhibit tail dependence accord-
ing to the data. Candidates are, for instance, copulas taken from the Gum-
bel or Clayton family (drawn in Figure 1 and Figure 2). Furthermore, the 
class of extreme value copulas is capable of capturing multivariate max-
stable processes. Risk assessment and interpolation for data exhibiting ex-
tremes  will highly benefit from a flexible copula instead of a steady Gaus-
sian approach.

3 COPULAS IN GEOSTATISTICS

In the field of geostatistics we deal with data observed in time and space 
and are interested in modelling natural processes. One common application 
is interpolation of data. In this case, we desire the multivariate distribution 



that describes how one unobserved location depends on known values in 
its  neighbourhood.  The dependence  structure of  this  distribution  can be 
captured by a multivariate copula. Bárdossy & Li (2008) and Kazianka & 
Pilz (2010) successfully exploit copulas for interpolation of spatial data us-
ing a comparatively small set of copulas. A promising approach exploiting 
the simplicity of bivariate copulas and generating a huge and very flexible 
set of multivariate copulas is the pair-copula construction. Therein, the de-
sired multivariate copula is decomposed into a set of bivariate copulas in-
corporating the conditional and unconditional distribution functions of the 
variables.  This  procedure  was  introduced  by  Aas,  Czado,  Frigessi  & 
Bakken (2009) in the financial sector. However, adapting the pair-copula 
construction to the spatio-temporal case is not straightforward.

We applied the copula approach to data on the deforestation survey of 
the Brazilian Amazon in order to investigate underlying dependencies. The 
Amazon rainforest is a tropical moist broadleaf forest that represents about 
half of the Earth’s remaining rainforest in the world. However, deforesta-
tion is a major issue and its underlying processes need to be understood. 
The dependence of deforestation on multiple parameters is complex and 
ranges from environmental  to socio-economic factors.  Their dependence 
structure changes for different quantiles and shows asymmetric non-Gaus-
sian dependencies (Figure 4).

Figure  4: Three empirical  copula densities  (filled contour) illustrating 
the different dependence structures of deforestation on the price of wood-
land and the  number  of  total  cattle  in  municipality in  comparison  to  a 
sample of a Normal copula.

Comparing  filled  contour  plots  of  the  empirical  copula  densities  in
Figure 4 makes the non-Gaussian structure obvious. The two left plots are 
based on data from the Amazon and the right plot on a sample drawn from 
a Normal copula. The typical assumption of an underlying Gaussian pro-
cess restricts the phenomena to exhibit elliptical patterns of dependence as 
in  the  right  plot.  The two plots  based  on  data  from the  Amazon  show 
shapes  following  an  arc  running  from  the  top-left  to  the  bottom-right 



corner and from the bottom-left to the top-right corner respectively. Thus, 
the  Gaussian  model  cannot  capture  these  dependencies.  Incorporating 
asymmetric copulas allows us to model these skewed shapes in a statistical 
set-up.

4 CONCLUSION

Copulas can be used in many fields of geostatistics and allow for new 
modelling approaches neglecting the common assumptions of symmetric 
dependencies and an underlying Gaussian process. Detaching the depend-
ence structure from the margins allows us to easily incorporate many dif-
ferent variables regardless of their domain. These new approaches will es-
pecially be beneficial for skewed data or data exhibiting extremes. Further-
more,  procedures based on copulas  can be applied  identically to  purely 
spatial as well as spatio-temporal data. Developing spatio-temporal copu-
las  based on the  pair-copula construction  will  enable  us to  model  mul-
tivariate data over space and time in a very flexible and sophisticated way. 
In the light of copulas it might be worth to revisit older scatter plots which 
did not show any reasonable correlation in order to apply a rank transform-
ation to their margins and to inspect their copulas. This might reveal undis-
covered but meaningful dependence structures of the underlying processes.
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