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3.3

The d-dimensional Copula

Definition

Denote [0, 1] by I. A copula of dimension d is a function
C : Id → I with the following properties:

1 C(u1, . . . , ud) = 0, if ∃ k ∈ {1, . . . , d} with uk = 0

2 C(1, . . . , 1, uk, 1, . . . , 1) = uk ∀ uk ∈ I and
∀ k ∈ {1, . . . , d}

3 ∀ u = (u1, . . . , ud),v = (v1, . . . , vd) ∈ Id with
uk ≤ vk ∀ k ∈ {1, . . . , d} (called d-increasing):∑

c∈V
sgn(c)C(c) ≥ 0

while

V :=
{
c ∈ Id

∣∣ck ∈ {uk, vk} ∀ k ∈ {1, . . . , d}}
sgn(c) :=

{
1, if ck = uk for an even number of ks
−1, if ck = uk for an odd number of ks
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3.4

The 2-dimensional Copula I

Definition

A copula is a function C : I2 → I with the following
properties:

1 C(u, 0) = 0 = C(0, v) ∀ (u, v) ∈ I2

2 C(u, 1) = u and C(1, v) = v ∀ (u, v) ∈ I2

3 ∀ (u1, v1), (u2, v2) ∈ I2 with u1 ≤ u2 and v1 ≤ v2 :

VC
(
[u1, u2]× [v1, v2]

)
=C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1)

≥0

This property is referred to as 2-increasing. We call the
value of the alternating sum VC

(
[u1, u2]× [v1, v2]

)
the

C-volume of the square [u1, u2]× [v1, v2] ⊂ I2.

See [Nelsen 2006] for a more detailed introduction.
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3.5

The 2-dimensional Copula II

The graph of a copula can be imagined as a surface in the
3-dimensional unit cube I3.
The intersection of any copula with the unit cube is given by
the edges of the skewed polygon{

(u, 0, 0), (1, v, v), (u, 1, u), (0, v, 0)
∣∣u, v ∈ I

}
.
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3.6

The Fréchet-Hoeffding bounds I

Example

The Fréchet-Hoeffding bounds
For M(u, v) := min(u, v) and
W (u, v) := max(u+ v − 1, 0) the following inequality
holds for every copula C:

W (u, v) ≤ C(u, v) ≤M(u, v)

The product copula
The 2-place function Π defined by Π(u, v) := uv is a
copula.
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3.7

The Fréchet-Hoeffding bounds II

Figure: Contour plots of M , Π and W for the level set
{0, 0.1, . . . , 0.9}. The light grey triangle represents the
Fréchet-Hoeffding bounds for a0 = 0.3.
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3.8

The Fréchet-Hoeffding bounds III

Figure: 3D-plots of M , Π and W



introduction to
copulas

Benedikt Gräler
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3.9

Derivatives of Copulas

Theorem

For a given copula C and any v ∈ I the partial derivative
∂C(u, v)/∂u exists for almost all u with respect to the
Lebesgue-measure. For such u and v we have

0 ≤ ∂
∂uC(u, v) ≤ 1 (1)

and also
v 7→ ∂

∂uC(u, v) (2)

is defined and non-decreasing almost everywhere on I.
The similar result with interchanged roles of u and v holds as
well.

The partial derivatives correspond to a conditional
distribution function.
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3.10

Sklar’s Theorem

Theorem

Let X and Y be random variables with distribution functions
F and G respectively and joint distribution function H.
Then there exists a copula C such that for all
(x, y) ∈ R×R:

H(x, y) = C
(
F (x), G(y)

)
C is unique if F and G are continuous; otherwise, C is
uniquely determined on ran(F )× ran(G).
Conversely, if C is a copula and F and G are distribution
functions then the function H defined as above is a joint
distribution function with margins F and G.
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3.11

The meaning of Sklar’s Theorem

For any joint distribution function H(x, y) exists a copula C
that describes the dependence of the two random variables
X and Y completely. The distributions of the margins are
not of any relevance and are removed by applying their
distribution functions F and G respectively.

H(x, y) = C
(
F (x), G(y)

)
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Copulas

Bounds

Derivatives

Sklar’s Theorem

Symmetry

Tail Dependence

Elliptical Copulas

Archimedean Copulas

Practical

Spatial and
Spatio-temporal
Copulas

one family approach

mixed family approach

Estimation of
Copulas

Maximum Likelihood

Moment based

GOF

Practical

References &
further readings

3.12

The Gaussian Copula I

Example (of Sklar’s Theorem)

Consider a bivariate standard Gaussian (X,Y ) random
variable with mean µ := (0, 0), a correlation ρ and

covariance matrix Σ :=

(
1 ρ
ρ 1

)
.

We denote its distribution function by Hρ(x, y). The
margins X and Y posses univariate standard Gaussian
distributions N(0, 1) with distribution function Φ. Following
Sklar’s Theorem we define:

CNρ (u, v) := Hρ

(
Φ−1(u),Φ−1(v)

)
This is the definition of the Gaussian Copula CNρ with
parameter ρ.
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3.13

The Gaussian Copula II

Note:
CNρ is as well the copula of any bivariate non-standard
Gaussian (i.e. µx, µy 6= 0, σx, σy 6= 1) random variable and
many non Gaussian random variables as well.

Attention:
There are ”more” bivariate random variables having
Gaussian margins but do not posses a Gaussian dependence
structure (a Gaussian copula).
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3.14

Copulas & dependence

A copula C : I2 → I can be understood as bivariate joint
distribution function of some distribution over the unit
square I2. As such, they posses a bivariate density function:

c : I2 → [0,∞)

This density is what we are really interested in!

The copula’s density reflects the strength of dependence of
the two margins.
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Copulas

Bounds

Derivatives

Sklar’s Theorem

Symmetry

Tail Dependence

Elliptical Copulas

Archimedean Copulas

Practical

Spatial and
Spatio-temporal
Copulas

one family approach

mixed family approach

Estimation of
Copulas

Maximum Likelihood

Moment based

GOF

Practical

References &
further readings

3.14

Copulas & dependence

A copula C : I2 → I can be understood as bivariate joint
distribution function of some distribution over the unit
square I2. As such, they posses a bivariate density function:

c : I2 → [0,∞)

This density is what we are really interested in!

The copula’s density reflects the strength of dependence of
the two margins.



introduction to
copulas

Benedikt Gräler
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3.15

A copula’s density

It holds C(u, v) =
∫

[0,u]×[0,v] c(x, y)d(x, y)

Figure: Contour plot and 3D density plot of a Gaussian Copula
for ρ = 0.2.
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3.16

About symmetry

Definition

We will introduce two kinds of symmetry:

(plain) symmetry: C(u, v) = C(v, u) ∀ u, v ∈ I

radial symmetry:
C(u, v) = u+ v − 1 + C(1− u, 1− v) ∀ u, v ∈ I

Example

The product copula Π(u, v) = uv is (obviously)
symmetric.

The Gaussian Copula CNρ is radial symmetric, as any
copula deduced from an elliptical distribution.
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3.17

The problem of symmetry

symmetry is nice as long as your process is symmetric

there are (many) natural processes that posses an
asymmetric dependence structure

elevation: valleys are usually smoother than mountains
amount of toxics: the increase of a toxic is usually much
steeper than its decay

unfortunately, most copula families in the literature are
symmetric
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3.18

An asymmetric copula

Example

CAab(u, v) = uv + uv(1− u)(1− v)
(
(a− b)v(1− u) + b

)
for all |b| ≤ 1 and

(
b− 3−

√
9 + 6b− 3b2

)
/2 ≤ a ≤ 1 with

a 6= b (see Example 3.16 in [Nelsen 2006]).

Figure: Contour plot and density plot of the asymmetric copula
with a = −0.5 and b = 0.3.
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3.19

An asymmetric pseudo-sample

Figure: An eleven day subset of some asymmetric pseudo-sample.
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3.20

Dependencies of extremes I

In cases of extreme events one is interested in the probability
to see joint extremes.
This is P

(
Y > G−(t)

∣∣X > F−(t)
)

for some t close to 1 or
0. We define the upper and lower tail dependence:

λU = lim
t↗1
P
(
Y > G−(t)

∣∣X > F−(t)
)

= 2− lim
t↗1

1− C(t, t)

1− t
λL = lim

t↘0
P
(
Y ≤ G−(t)

∣∣X ≤ F−(t)
)

= lim
t↘0

C(t, t)

t
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3.21

Some examples of tail dependence

Example

any radial symmetric copula has equivalent upper and
lower tail dependence

the family of Gaussian copulas does not exhibit any tail
dependence
(even Gaussian Copulas with correlation coefficients ρ
very close to 1 generate (almost) independent extremes)

the copulas W (perfect negative dependence) and Π
(independence) do not exhibit any tail dependence

for the copula M (perfect positive dependence) we get
λU = λL = 1
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Copulas

Bounds

Derivatives

Sklar’s Theorem

Symmetry

Tail Dependence

Elliptical Copulas

Archimedean Copulas

Practical

Spatial and
Spatio-temporal
Copulas

one family approach

mixed family approach

Estimation of
Copulas

Maximum Likelihood

Moment based

GOF

Practical

References &
further readings

3.22

Gaussian Copulas I

We have seen the Gaussian Copula before:

CNρ (u, v) := Φρ

(
Φ−1(u),Φ−1(v)

)
Its density evaluates to:

cNρ (u, v) =
ϕρ
(
Φ−1(u),Φ−1(u)

)
ϕ
(
Φ−1(u)

)
ϕ
(
Φ−1(v)

)
With −1 ≤ ρ ≤ 1 (Pearson’s correlation coefficient)
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3.23

Gaussian Copulas II

Figure: Contour plot and 3D density plot of a Gaussian Copula
for ρ = 0.2.
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3.24

Student Copulas I

The Student Copula (or t-Copula) is derived from the
t-distribution:

Ctν,ρ(u, v) = tν,ρ
(
t−1
ν (u), t−1

ν (v)
)

Where tν,ρ is the cumulative distribution function of a
bivariate tν,ρ distribution and ρ is the correlation coefficient.
Its density evaluates to:

ctν,ρ(u, v) =
fν,ρ
(
fν
(
t−1
ν (u)

)
, fν
(
t−1
ν (v)

))
fν
(
t−1
ν (u)

)
fν
(
t−1
ν (v)

)
Where fν,ρ is the joint density of a bivariate tν-distribution.
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3.25

Student Copulas II

Figure: Contour plot and density plot of a t-Copula with ρ = 0.2
and ν = 1. The density graph is limited to a level of 10 (the
values for (u, v) = (0, 0) and (u, v) = (1, 1) reach up to 24.2).
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3.26

Student Copulas III

A t-Copula’s tail dependence can be evaluated by

λtν,ρ = 2tν+1

(
−
√

(1 + ν)(1− ρ)√
1 + ρ

)
.

Surprisingly, a t-Copula exhibits tail dependence even for
negative correlation coefficients.
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Copulas

Bounds

Derivatives

Sklar’s Theorem

Symmetry

Tail Dependence

Elliptical Copulas

Archimedean Copulas

Practical

Spatial and
Spatio-temporal
Copulas

one family approach

mixed family approach

Estimation of
Copulas

Maximum Likelihood

Moment based

GOF

Practical

References &
further readings

3.27

Student Copulas IV

Figure: Comparison of the relation of the linear correlation
parameter ρ and the tail dependence λ for different values of ν.



introduction to
copulas

Benedikt Gräler
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3.28

Archimedean Copulas

A vast and flexible class of copulas are the Archimedean
Copulas. They are defined by:

Definition

C(u, v) = ϕ[−](ϕ(u) + ϕ(v)) is an Archimedean Copula for
any strictly decreasing convex function ϕ with ϕ(1) = 0 - its
generator. ϕ[−] is defined as the pseudo-inverse of ϕ:

ϕ[−](t) :=

{
ϕ−1(t) , if 0 ≤ t ≤ ϕ(0)
0 , if ϕ(0) ≤ t ≤ ∞
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3.29

Some explicit Archimedean Copulas I

Example

The Frank family CF := {CFθ |θ ∈ ΘF }:
For any parameter θ ∈ ΘF := (−∞,∞)\{0} and the

corresponding generator ϕFθ (t) = − ln( exp(−θt)−1
exp(−θ)−1 ) one

achieves

CFθ (u, v) = −1
θ ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
.

They posses the lower and the upper Fréchet-Hoeffding
bounds as limiting cases as θ approaches −∞ and ∞
respectively. For θ → ±0 it takes the product copula as its
limit CF,±0 = Π. For all Frank copulas

CFθ (u, v) = ĈFθ (u, v) = u+ v − 1 + CFθ (1− u, 1− v) holds
and it is λFU = λFL = 0. This family is the only Archimedean
radially symmetric one.
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3.30

Some explicit Archimedean Copulas II

Figure: Contour plot and density plot of a Frank Copula CF
7 .
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3.31

Some explicit Archimedean Copulas III

Example

The Gumbel family CG := {CGθ |θ ∈ ΘG}:
For a parameter θ ∈ ΘG := [1,∞) and the generator
ϕGθ (t) = (− ln(t))θ one achieves

CGθ (u, v) = exp

(
−
(

(− ln(u))θ + (− ln(v))θ
)1/θ

)
These copulas range from the product copula Π for θ = 1 to
the upper Fréchet-Hoeffding bound as limiting case while θ
approaches ∞.
The tail dependence parameters evaluate to λGU = 2− 21/θ

and λGL = 0.
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3.32

Some explicit Archimedean Copulas IV

Figure: Contour plot and density plot of a Gumbel Copula CG
3 .
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3.33

Some explicit Archimedean Copulas V

Example

The Clayton family CC := {CCθ |θ ∈ ΘC}:
For the parameter space ΘC := [−1,∞)\{0} and generators
of the form ϕCθ (t) = t−θ − 1 with θ ∈ ΘC one achieves

CCθ (u, v) =
(

max
(
u−θ + v−θ − 1, 0

))−1/θ
.

These copulas range from the lower to almost the upper
Fréchet-Hoeffding bounds as θ equals −1 or approaches ∞
respectively. For θ tending towards ±0 the family converges
to the product copula Π.
The tail dependence parameters evaluate to λCU = 0 and
λGL = 2−1/θ.
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3.34

Some explicit Archimedean Copulas VI

Figure: Contour plot and density plot of a Clayton Copula CC
1 .
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3.35

TASK - estimate some copulas

1 plot a couple of copulas for a different set of parameters
as contour, 3D their densities ...

2 How will the density of the Fréchet Hoeffding bounds
look like?

3 How does the density of the product copula Π look like?

4 Which of the introduced families intersect? For which
parameters? (Look at the parameter space beforehand.)

5 Plot the difference of two copula densities (or copula)
to study their different strength of dependence.

6 Compare in this way the product copula with the
normal copula for a small parameter (≈ 0.2).

Explain the plots, the differences and the meaning of
positive/negative values as well in terms of strength of
dependence (where appropriate).
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3.36

General thoughts

A spatial (or spatio-temporal) copula shall describe the
spatial (or spatio-temporal) dependence of two locations s1,
s2 (or (s1, t1), (s2, t2)) of a random process Z defined over
some region S (or S × T ). Thus, instead of the bivariate
process of wind speed and temperature at one location, we
look at wind speed or temperature at two different locations.

we expect the dependence structure to change for
different aligned points

we have to make the copula aware of location/distance
and (direction)

we need some function h : S → Θ from S into the
copula’s parameter space Θ

we need to ensure that the spatial (or spatio-temporal)
copula respects Tobler’s first law of geography
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3.37

within one family

One way of defining a spatial (or spatio-temporal) copula is
to look at a single copula family. In this case, we only need
to find a function h : S → Θ which reproduces the changing
dependence over space. The one copula family we choose
needs to have two properties:

takes the product copula Π and the upper
Fréchet-Hoeffding bound M for some parameter θ ∈ Θ
(or at least as limiting cases). The product copula Π
can then be chosen for independent far distant locations
and M describing perfect positive dependence for very
close locations.

is flexible enough to represent all different dependence
structures
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3.38

setting up a one family spatial copula

Example

Assume you have an isotropic data set of temperature
measurements over a given region. Group the data into a set
of lag-classes, transform the margins to uniform distributed
variables and take a look at the corresponding scatter plots
(using for instance hscat()).
Choose a suitable copula family C, estimate the parameter(s)
for each lag and fit some function h : [0,∞)→ ΘC of
distance through them:

Ch(d)(u, v)
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3.39

multiple families

A second approach considers multiple copula families and
grounds on the fact, that any linear convex combination of
copulas is a copula.

Now, we might even change the copula family according
to location/distance and (direction).

The spatial (or spatio-temporal) copula is then a convex
combination of a set of copulas (luckily, any convex
combination of copulas is a copula).

In case of very close points we can simply add the
copula M and in case of far distant points we can add
the product copula Π to the convex combination.



introduction to
copulas

Benedikt Gräler
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3.40

setting up a multiple family spatial copula

Example

Assume you have an isotropic data set of temperature
measurements over a given region. Group the data into a set
of lag-classes, transform the margins to uniform distributed
variables and take a look at the corresponding scatter plots
(using for instance hscat()).
Choose a suitable copula family C for each lag-class and
estimate their parameter(s). For any distance d pick the two
fitted copulas from the neighboring lag-classes dl, du and
define λ := (du − d)/(du − dl):

Cd(u, v) := λ · Cdl(u, v) + (1− λ) · Cdu(u, v)

While C0 = M and Cr = Π for some maximal distance r.
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3.41

Transform of margins

There are several possibilities to estimate a copula within a
family (the choice of family has to be achieved upon
inherited properties, by smart guessing or afterwards by
GOF-tests). But before, we need to transform the margins
by

knowing the marginal distributions

estimating the marginal distributions

approximating the marginal distributions by a
rank-order transformation
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3.42

rank-order Transformation

In the transformed dataset Z̃ any observation zi ∈ Z is
replaced by its rank divided by the number of
observations+1:

Z̃ :=

{
rank(zi)

n+ 1

∣∣ 1 ≤ i ≤ n
}

Z̃ is uniformly distributed. This approach does not alter the
copula as a copula is invariant under strictly increasing
transformations of the margins. (= As long as you do not
alter the ranks in the sample, you do not alter the copula.)



introduction to
copulas

Benedikt Gräler
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3.43

Empirical Copula

For a sample (X,Y) with transformed margins the empirical
copula is defined as:

Cn(u, v) =
#{k ∈ {1, . . . , n}

∣∣xk ≤ u ∧ yk ≤ v}
n

A two-dimensional step function.
We will denote the empirical copula frequency (empirical
density) by cn. It is given by:

cn

(
i
n ,

j
n

)
=

{
1/n , if (x(i), y(j)) ∈ (X,Y)

0 , otherwise
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3.44

different estimation procedures

Copulas can be estimated by

a Maximum Likelihood approach

a moment based approach incorporating measures of
association like Kendall’s tau or Spearman’s rho (does
not apply in a general way)

mixtures of both

a Bayesian approach

others
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3.45

Maximum Likelihood estimation

Assume a bivariate dataset with uniform distributed margins
U = (u1, . . . , un) and V = (v1, . . . , vn). For a given copula
family C with parameter space ΘC we define its
log-likelihood function by:

L(θ) =

n∑
i=1

log
(
cθ (u, v)

)
θ̂ = arg max

θ∈Θ
L(θ)

This approach can easily be extend to copulas of higher
dimensions.



introduction to
copulas

Benedikt Gräler
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3.46

Maximum Liklihood in R

The library copula1 offers a build-in method fitCopula()

to estimate copulas. The data needs to be provided as
matrix. In order to choose a copula family one member
needs to be provided to the function.

fitCopula(copula, data, method="ml")

uranium.biv <- as.matrix(uranium[c("U","Li")])

fitCopula(frankCopula(.4),uranium.biv,method="ml")

The estimation is based on the maximum likelihood

and a sample of size 655.

Estimate Std. Error z value Pr(>|z|)

param 1.206623 0.0007958563 1516.131 0

The maximized loglikelihood is 599.156

1see http://cran.r-project.org/web/packages/copula/

http://cran.r-project.org/web/packages/copula/
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3.47

Copulas and Kendall’s tau and Spearman’s rho

The two measures of association Kendall’s tau and
Spearman’s rho can be derived from any copula. Some
exhibit a nice functional relation between their parameter
and one or both measure(s) of association above.

The population version of Kendal’s tau is given by:

τC = 4

∫ 2

I
C(u, v) dC(u, v)−1 =Arch.Cop. 1+4

∫ 1

0

ϕ(t)

ϕ′(t)
dt

The population version of Spearman’s rho is given by:

ρC = 12

∫ 2

I
C(u, v)− uv d(u, v)
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3.48

estimating Kendall’s tau

Definition

Let (X,Y) denote the n observations drawn from a
continuous random vector (X,Y ). We denote the number of
concordant pairs of observations by c and the number of
discordant pairs of observations by d. The empirical version
of Kendall’s tau is given by :

τ̂
(
X,Y

)
:=

c− d
c+ d

=
c− d(
n
2

)
In case the sample contains any ties we use the following
corrected version

τ̂
(
X,Y

)
:=

c− d√
c+ d+ tx

√
c+ d+ ty

.

Where tx and ty are the number of ties in X or Y only while
ties that happen to occur in both margins simultaneously are
not counted at all.
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3.49

estimating Spearman’s rho

Definition

For a given sample (X,Y) of size n, drawn from a
continuous random vector, we define the empirical version of
Spearman’s rho by

ρ̂
(
X,Y

)
:= 1−

6
n∑
i=1

∆2
i

n(n2 − 1)

where ∆i := rank(xi)− rank(yi) for (xi, yi) ∈ (X,Y),
1 ≤ i ≤ n. In case of ties within the sample we consider the
averaged ranks and adjust ρ̂ by

ρ̂
(
X,Y

)
:=

n
∑

(risi)−
∑
ri
∑
si√

n
∑
r2
i − (

∑
ri)2

√
n
∑
s2
i − (

∑
si)2

.

while all sums are taken over i = 1, . . . , n. The variables ri
and si are given as ri := rank(xi) and si := rank(yi).
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3.50

Spearman’s rho

Spearmn’s rho can be thought of as the standard correlation
coefficient (Pearson) applied to the ranks of a sample.

Spearman’s rho assigns 1 to a perfect monotonic
dependence structure which need not be linear in any sense.

In general, it is less sensitive to outliers than Pearson’s
correlation coefficient.
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3.51

Kendall’s tau and Spearman’s rho in R

The function cor() provides an argument method that
takes "pearson", "kendall" or "spearman". Where
"pearson" is the default vlaue.
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3.52

Estimating copulas with τ̂ or ρ̂

Definition

We define the inverse tau esitmator as

θ̂K = arg min
θ∈Θ

(
τ̂
(
X,Y

)
− τθ

)2
.

Definition

We define the inverse rho esitmator as

θ̂S = arg min
θ∈Θ

(
ρ̂
(
X,Y

)
− ρθ

)2
.

Note:
In cases where τ̂ or ρ̂ take values which cannot be
represented by a given copula family the estimates might be
rather missleading.



introduction to
copulas

Benedikt Gräler
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3.53

Some nice copula families

Example

θ̂K
(
X,Y

)
:= f

(
τ̂(X,Y)

)
.

While f(x) takes one of the following forms and we will give
θ̂K a superscript accordingly:

fG(x) := 1/(1− x), 0 ≤ x < 1 Gumbel, ΘG = [1,∞)

fC(x) := 2x/(1− x), x < 1 Clayton, ΘC = [−1,∞)

fN (x) := sin
(

1
2πx

)
Gaussian, ΘN = [−1, 1]

ft(x) := fN (x) Student, Θt = [−1, 1]
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Moment based estimator in R

The function fitCopula() provides both estimation
methods as well. The argument method needs to be
changed to "itau" or "irho" respectively.

fitCopula(frankCopula(.4),uranium.biv,method="itau")

The estimation is based on the inversion of Kendall’s tau

and a sample of size 655.

Estimate Std. Error z value Pr(>|z|)

param 1.210628 0.3102544 3.902051 9.538113e-05

fitCopula(frankCopula(.4),uranium.biv,method="irho")

The estimation is based on the inversion of Spearman’s rho

and a sample of size 655.

Estimate Std. Error z value Pr(>|z|)

param 1.198800 0.6369692 1.882037 0.05983096
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3.55

GOF for Copulas I

For an empirical copula Cn and Cθ̂ the Cramér-von Mises
test-statistic for H0 : C = Cθ̂ is given by:

Sn :=

∫
I2
n
(
Cn(u, v)− Cθ̂(u, v)

)2
dCn(u, v)

For numerical evaluation purposes the Riemann sum
approximate can be used:

S̃n :=

n∑
i=0

(
Cn(ui, vi)− Cθ̂(ui, vi)

)2
Where

(
(u1, v1), . . . , (un, vn)

)
is the transformed sample

with margins on (0, 1).
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3.56

GOF for Copulas II

Kendall’s Cramér-von Mises test-statistic is defined as:

SKn :=

∫
I
n(Kn(v)−Kθ̂(v))2dKθ̂(v)

For ease of numerical evaluation its Riemann sum
approximate can be used

S̃Kn :=
n

3
+ n

n−1∑
i=1

Kn(ui)
2
(
Kθ̂(ui+1)−Kθ̂(ui)

)
− n

n−1∑
i=1

Kn(ui)
(
Kθ̂(ui+1)2 −Kθ̂(ui)

2
)

while u1 ≤ . . . ≤ un are the ordered values of
{V1, . . . , Vn}, Vi := Cn(Fn(xi), Gn(yi)), i = 1, . . . , n,
Kn(v) := 1

n#
{
k ∈ {1, . . . , n}

∣∣Vk ≤ v} , v ∈ I and
Kθ(t) :=

∫
I2 1Cθ(u,v)≤t dCθ(u, v).
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3.57

GOF for Copulas III
An approximate p-value can be achieved by:

i) Estimate θ from the sample through one of the given
estimators and calculate its empirical copula Cn
(Kendall distribution Kn).

ii) Compute the test-statistic s0 := S̃n (s0 := S̃Kn ).

iii) Simulate a sample Z̄ from the copula Cθ of the same
size as the original one and calculate their corresponding
rank statistics.

iv) Estimate θ̄ from Z̄ through the same estimator as above
and calculate its empirical copula C̄n (Kendall
distribution K̄n).

v) Repeat the steps iii) and iv) for a large integer N and
compute its test-statistic si := S̃n (si := S̃Kn ) for any
1 ≤ i ≤ N .

vi) The approximate p-value is #{1 ≤ i ≤ N | si > so}/N.

Further details are discussed in [Genest 2007].
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3.58

Graphical GOF I

A graphical tool to decide which copula fits best can as well
be deduced from the Kendall distribution function (proposed
e.g. in [Genest 2006]). We define an empirical and
theoretical version of a function λ : I→ [−1, 1] respectively
by

λn(v) := v −Kn(v)

and

λθ(v) := v −Kθ(v).

A comparison of λn with (maybe multiple) λθ in a single
plot may give some guidance.
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3.59

Graphical GOF II

Figure: Comparison of empirical and theoretical Kendall
distribution K(v) (left) and λ(v) (right).
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3.60

TASK - estimate some copulas

1 compare Kendall’s tau, Spearman’s rho and Pearson’s
correlation coefficient with each other for some bivariate
random numbers generated by a copula, and some data
set (zinc with lead, ...).

2 plot all three correlation measures for a set of
generating parameters (≈ 10).

3 estimate a bivariate copula using the copula package
for the uranium dataset, compare different families and
choose the best fitting one
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