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1.3

Probability Theory

In Probability Theory we design experiments which underly
some randomness and ask for the probability of certain
outcomes.

Example (throwing a six-sided die)

The set of all possible values is Ω := {1, . . . , 6}. We assume,
there is no number to occur more likely than any other.
Thus, we design a probability measure P, which assigns a
probability of 1

6 to each possible event in Ω. Thus, its
density is the constant function f(ω) ≡ 1

6 on Ω.
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1.4

Distributions

These probability measures are, in a more general sense,
distributions. There is an unlimited number of possible
distributions and families of distributions.

Example

Normal distribution N(µ, σ2) on R with mean µ ∈ R,
standard deviation σ ∈ (0,∞) and density

fN (x) = 1√
2πσ

exp(−(x−µ)2

2σ2 )

Uniform distribution U(a, b) on (a, b) ⊂ R (or [a, b])
with density fU (x) = 1

b−a
Exponential distribution Exp(λ) on [0,∞) with
parameter λ ∈ (0,∞) and density fE(x) = λ exp(−λx)
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1.5

pdf & cdf

Each distribution has besides its density f (pdf = probability
distribution function) a cumulative distribution function F
(cdf) that is for continuous distributions

F (x) :=

x∫
−∞

f(t)dt

and in case of discrete probability distributions

F (x) :=
∑

ω∈Ω,ω≤x
f(ω).
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1.6

Properties of the cdf

We derive the following properties from the design
of a cdf F :

F is monotone non-decreasing

lim
x→−∞

F (x) = 0

lim
x→+∞

F (x) = 1

F is right-continuous: lim
x→+x0

F (x) = F (x0)

A pdf or cdf uniquely defines a probability distribution.
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1.7

distributions in R

distribution R command

β(a, b) beta
C(a, b) cauchy
χ2 chisq

Exponential exp
F(m; n) f

Γ gamma
U(a, b) unif
logistic logis

lognormal lnorm
N(µ, σ2) norm

t t
B(n, p) binom

geometric geom
hypergeom. hyper
NB(α, θ) nbinom
Poisson pois
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1.8

Random Variables

Formally speaking, a (real valued) random variable Z is a
(measurable) function Z : Ω→ R.

Practically speaking, a random variable Z describes some
property which is subject to some randomness.

We usually deal with a spatial random field Z over some
spatial region S. A spatial random field is a set
Z := {Z(s)|s ∈ S} of (spatial) random variables Z(s) at
different locations s ∈ S.

These Z(s) take for some random event (ω ∈ Ω) a value in
their domain (e.g. range of temperatures). Their behaviour
may change for different locations s ∈ S (non-stationary vs.
stationary spatial random fields).
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1.9

Extreme Value Distributions

A special class of probability distributions are the extreme
value distributions (evd). A evd is characterized by its cdf G
through the fact that

lim
n→∞

Gn = G.

Where Gn is the cdf of max(X1, . . . , Xn) and the Xi are
independent copies of random variables following the
distribution induced by G.
One can show that there are only three families of extreme
value distributions: Gumbel, Fréchet and Weibull. These can
even be parametrized as single family (generalized extreme
value distribution).
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1.10

Properties of evd

The remarkable difference is in the tails of the distributions.

Extreme Value Distributions posses heavy tails. That is,
even small regions very far from the mean of the distribution
(multiple standard deviations) have a considerable positive
probability.
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1.11

Normal vs. Gumbel

Comparing the probabilities of the standard Normal and
Gumbel distribution both with mean 0 and standard
deviation 1 the ratios for the first 10 multiples of the
standard deviation are:

x Gumbel/Normal
1 0.6
2 1
3 3
4 29
5 746
6 51e+3
7 9e+6
8 4e+9
9 7e+12
10 25e+15
...

...
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1.12

Gumbel

The Gumbel evd is defined on R with parameters µ ∈ R and
β ∈ (0,∞). Its density is given by

fG(x) =
e−(x−µ)/β

β
· exp(−e−(x−µ)/β)

and its cumulative distribution function is

FG(x) = exp(−e−(x−µ)/β).
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1.13

Fréchet

The Fréchet evd is defined on (0,∞) with parameters
α ∈ (0,∞), m ∈ R and s ∈ (0,∞). Its density is given by

fF (x) = α

(
x−m
s

)−(1+α)

exp

(
−
(
x−m
s

)−α)

and its cumulative distribution function is

FF (x) = exp

(
−
(
x−m
s

)−α)
.
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1.14

Weibull

The Weibull evd is defined on [0,∞) with parameters
λ ∈ (0,∞) and k ∈ (0,∞). Its density is given by

fW (x) =
k

λ

(x
λ

)k−1
· exp

(
−
(x
λ

)k)
and its cumulative distribution function is

FW (x) = 1− exp

(
−
(x
λ

)k)
.
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1.15

The three Extreme Value Distributions
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1.16

cdf-Transform

We will need the following theorem later on:

Theorem

For a random variable X following any distribution D with
cdf FD the transformed variable FD(X) follows the standard
uniform distribution U(0, 1).
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1.17

from univariate to n-variate Distributions

There are several ways of extending univariate distributions
to n-variate distributions (explicit, conditional, copulas, . . . ).
Consider for example the n-variate normal distribution:

Example

We define new parameters: the mean vector µ ∈ Rk and the
covariance matrix Σ ∈ Rk × Rk (symmetric and
positive-definite). The multivariate density is given by

fN (x) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)tΣ−1(x− µ)

)
.
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1.18

The Joint cdf

The joint cdf of some n-variate distribution Pn is given by:

H(x1, . . . , xn) = Pn(X1 ≤ x1, . . . , Xn ≤ xn)

In the case of bivariate distributions it is the probability of
the lower left rectangle of the point (x1, x2) (i.e.
(−∞, x1)× (−∞, x2)).
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1.19

Tasks

play around with some distributions (i.e. evd) by
comparing densities for different parameters of one
family and between families

find parameters for the Gumbel distribution such that
its mean and standard deviation are (approximately) the
same as for the standard normal distribution.

empirically validate the theorem on the cdf-Transform
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1.20

Statistics

In (geo)statistics we usually observe a sample/realization
Z =

(
z(s1), . . . , z(sn)

)
of some spatial random field

Z = {Z(si)|1 ≤ i ≤ n} and want to derive the underlying
probability distribution.

Knowing the underlying probabilistic model enables us to
explain the observed processes, to run simulations and to
perform forecasts.
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1.21

Single Characteristic Values I

Usually we start with (descriptive) estimates of single values
like mean, variance or skewness of a given sample.

In some cases, these (moment) estimates completely
determine the parameters of a distribution (but not the
distribution itself!). This estimation procedure is called
method of moments.
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1.22

Single Characteristic Values II

Example

The parameter λ of the exponential distribution Exp(λ) can
be estimated by the mean µ̂ of the sample Z through
λ̂(Z) = µ̂−1.

The skewness of a sample may give advise in selecting a
suitable distribution before one estimates the parameters.



Background

Benedikt Gräler
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1.23

Method of Moments

The empirical (according to the sample Z = (z1, . . . , zn))
and theoretical (of the distribution Z) moments of different
order are compared. This leads to a set of equations which
can then be solved for the distributions parametrs:

E(Z) =
1

n

n∑
i=1

zi

E(Z2) =
1

n

n∑
i=1

z2
i

Var(Z) = E(Z2)−E(Z)2 =
1

n

n∑
i=1

z2
i −

( 1

n

n∑
i=1

zi
)2

E(Z3) =
1

n

n∑
i=1

z3
i
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1.24

Maximum Likelihood

The maximum likelihood approach grounds on the
assumption that the drawn sample Z is a very likely one.
Thus, the parameter(s) θ ∈ Θ are chosen for which Z
becomes the most likely sample to occur:

θ̂M (Z) = arg max
θ∈Θ

n∏
i=1

fθ(z)

or equivalently

θ̂L(Z) = arg max
θ∈Θ

n∑
i=1

log
(
fθ(z)

)
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Probability Theory

Distributions

Random Variables

Extreme Value
Distributions

cdf-Transform

n-variate Distributions

Practical

Statistics

Estimation

GOF

Practical

References &
further readings

1.25

Bayes Estimator

We add an a priori belief p : Θ→ [0, 1] to the parameter
space Θ (no clue might mean uniform distribution over all
parameters). The Bayes estimator minimizes the mean
square error (MSE, or any other appropriate risk). Thus θ
becomes a random variable.
For the MSE the Bayes estimator θ̂B(Z) is the mean of the a
posteriori distribution of θ and given by

θ̂B(Z) = E(θ|Z) =

∫
Θ

ϑf(ϑ|Z)dϑ

where

f(ϑ|Z) =Bayes
p(ϑ)fϑ(Z)∫

Θ

p(t)ft(Z)dt
.
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1.26

Tools in R

mean, var, sd, summary

histograms: hist(data, freq=F)

overlaying functions: curve(dnorm(x), add=T)

empirical cdf: ecdf(data) returns a step function

quantile-quantile plots: qqplot compares quantiles of
two samples

calculating quantiles: quantile(data, prob)

log-likelihood estimation: mle(minuslogl) minimizes
the minuslogl function

estimating a non parametric density:
density(data, bw, kernel, ...)
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1.27

Fitting Extreme Value Distributions

We can either assume that the sample is drawn from an evd
alone or a convex combination of distributions. An evd can
be fitted in the same way as usual distributions, but there
are some more tools.

the POT-method (points over threshold) helps to select
a threshold and to identify the maxima (gpd)

annual block method: select the
daily/weekly/monthly/yearly maxima as sample (gev)
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1.28

Fitting a evd Using POT I

We use the dataset portpirie (package: evd) containing
the annual maximum sea levels from 1923 to 1987.
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1.29

Fitting a evd Using POT II

The mean residual life function

mrl(u) := E(Z − u|Z > u) =
E
(
(Zi − u)1Zi>i

)
P(Zi > u)

is linear in u for generalized pareto distributions (a joint
parametrization of evd for exceedances).

Plotting mrl(u) for all possible values lets us choose an
appropriate threshold. The slope b of the plot can be used to
calculate the shape parameter γ by γ̂ = b/(1 + b).

The parameters scale σ and location µ can be derived from
a qq-plot of theoretical quantiles of a gpd with γ = γ̂, σ = 1
and µ = 0 against the sample.
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1.30

Fitting a evd Using POT III

We chose a threshold of 3.85 m and fitted a line with slope
b = −0, 2.

mrlplot(portpirie)

abline(v=3.85,col="red")

abline(1.01,-0.2,col="red")
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1.31

Fitting a evd Using POT IV

A linear model gave σ̂ ≈ 0.32 and µ̂ ≈ 3.84.

Call:

lm(formula = sort(portpirie[portpirie > 3.85]) ~

qgpd((1:44)/45, shape = -0.25))

Coefficients: (Intercept) slope

3.8431 0.3231
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1.32

Fitting a evd Using POT V
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1.33

Fitting a evd Using Anual Blocks I

The data set portpirie actually is aquired as anual maxima
water levels. Thus, we might try to fit a generalized extreme
value distribuitopn (gev) right away.

> fgev(portpirie)

Call: fgev(x = portpirie)

Deviance: -8.678117

Estimates

loc scale shape

3.87475 0.19805 -0.05012

Standard Errors

loc scale shape

0.02793 0.02025 0.09826

Optimization Information

Convergence: successful

Function Evaluations: 31

Gradient Evaluations: 8
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1.34

Fitting a evd Using Anual Blocks II

A visual comparison shows a quite reasonable fit:
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1.35

Goodness of Fit Testing

Most techniques will give an estimate no matter how far
fetched the underlying concept might be. Goodness of fit
tests (GOF) are used to evaluate the fit.

Depending on the complexity of the model, a simple
test-statistic might do, or a simulation needs to be run in
order to compare the behavior of the fitted probability
distribution to the one sample.
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1.36

Comparing Distributions I

The Kolmogorov-Smirnov test (KS-test) compares the ecdf
with the fitted cdf by calculating its biggest difference. An
alternative is the Cramér-von-Mises test (CvM-test) which
considers the integral over the squared difference of two cdfs.

Example

In case of the fitted gpd we get:

> ks.test(exce,"pgpd",loc=3.8431,scale=0.3231,shape=-0.2)

One-sample Kolmogorov-Smirnov test

data: exce

D = 0.0753, p-value = 0.9644

alternative hypothesis: two-sided

Thus, our hypothesis (the sample was drawn from gpd with
the estimated parameters) can not be rejected for any
common significance level.
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1.37

Comparing Distributions II

Example

In case of the automatic fit of the gev we get:

> ks.test(portpirie, "pgev", loc=3.87475, scale=0.19805,

shape=-0.05012)

One-sample Kolmogorov-Smirnov test

data: portpirie

D = 0.0606, p-value = 0.9706

alternative hypothesis: two-sided

Thus, our hypothesis (the sample was drawn from gev with
the estimated parameters) can not be rejected for any
common significance level.
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1.38

GOF by simulation

In cases where the underlying distribution used to calculate
critical values/p-values is unknown a bootstrapping
procedure can be used:

1 estimate θ from the sample Z through one of the given
estimators

2 compute the test-statistic s0 (e.g. CvM-test-statistic)

3 simulate a sample Z̄ from the assumed distribution of
the same size as the original one

4 estimate θ̄ from Z̄ through the same estimator as above

5 repeat the steps 3 and 4 for a large integer N > 100
and compute each test-statistic si, 1 ≤ i ≤ N

6 the p-value can be approximated by
#{1 ≤ i ≤ N | si > so}/N.
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1.39

Tasks

fit some distributions (i.e. evd) to given samples
(meuse, or use data() to look for more) using the
methods of moments and the maximum likelihood
estimator

fit a distribution to the meuse dataset/your dataset

implement a Bayes estimator in R

conduct a goodness of fit test by simulation
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1.40

Löwe, M., Mathematische Statistik
http://wwwmath.uni-muenster.de/statistik/

loewe/mathstatistik.pdfl

Löwe, M., Extremwert Theorie, http://wwwmath.
uni-muenster.de/statistik/loewe/extrem.pdf

http://wwwmath.uni-muenster.de/statistik/loewe/mathstatistik.pdfl
http://wwwmath.uni-muenster.de/statistik/loewe/mathstatistik.pdfl
http://wwwmath.uni-muenster.de/statistik/loewe/extrem.pdf
http://wwwmath.uni-muenster.de/statistik/loewe/extrem.pdf
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