Background Benedikt Gräler

Chapter 1 Background

Seminar *Spatio-temporal dependence*, 07.02.2011

ifgi Institute for Geoinformatics University of Münster

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

References & further readings

Benedikt Gräler Institute for Geoinformatics University of Muenster

Outline

1 Probability Theory

- Distributions
- Random Variables
- Extreme Value Distributions
- cdf-Transform
- n-variate Distributions
- Practical

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Outline

1 Probability Theory

- Distributions
- Random Variables
- Extreme Value Distributions
- cdf-Transform
- n-variate Distributions
- Practical

2 Statistics

- Estimation
- GOF
- Practical

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Outline

1 Probability Theory

- Distributions
- Random Variables
- Extreme Value Distributions
- cdf-Transform
- n-variate Distributions
- Practical

2 Statistics

- Estimation
- GOF
- Practical

3 References & further readings

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Probability Theory

In *Probability Theory* we design *experiments* which underly some randomness and ask for the probability of certain outcomes.

Example (throwing a six-sided die)

The set of all possible values is $\Omega := \{1, \ldots, 6\}$. We assume, there is no number to occur more likely than any other. Thus, we design a *probability measure* \mathbb{P} , which assigns a probability of $\frac{1}{6}$ to each possible event in Ω . Thus, its *density* is the constant function $f(\omega) \equiv \frac{1}{6}$ on Ω .

Background

Benedikt Gräler

ifgi Institute for Geoinformatics University of Münster

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Distributions

These probability measures are, in a more general sense, *distributions*. There is an unlimited number of possible distributions and families of distributions.

Example

- Normal distribution $N(\mu, \sigma^2)$ on \mathbb{R} with mean $\mu \in \mathbb{R}$, standard deviation $\sigma \in (0, \infty)$ and density $f_N(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp(\frac{-(x-\mu)^2}{2\sigma^2})$
- Uniform distribution U(a,b) on $(a,b) \subset \mathbb{R}$ (or [a,b]) with density $f_U(x) = \frac{1}{b-a}$
- Exponential distribution $Exp(\lambda)$ on $[0,\infty)$ with parameter $\lambda \in (0,\infty)$ and density $f_E(x) = \lambda \exp(-\lambda x)$

Background

Benedikt Gräler

Probability Theory

Distributions

Random Variables

Extreme Value Distributions

cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

pdf & cdf

Each distribution has besides its density f (pdf = probability distribution function) a cumulative distribution function F (*cdf*) that is for continuous distributions

$$F(x) := \int_{-\infty}^{x} f(t)dt$$

and in case of discrete probability distributions

$$F(x) := \sum_{\omega \in \Omega, \omega \le x} f(\omega).$$

Background

Benedikt Gräler

Probability Theory

Distributions

Random Variables

Extreme Value Distributions

cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Properties of the cdf

We derive the following properties from the design of a cdf F:

- F is monotone non-decreasing
- $\lim_{x \to -\infty} F(x) = 0$
- $\lim_{x \to +\infty} F(x) = 1$
- F is right-continuous: $\lim_{x \to +x_0} F(x) = F(x_0)$

A pdf or cdf uniquely defines a probability distribution.

Background

Benedikt Gräler

Probability Theory

Distribution

Random Variables

Extreme Value Distributions

cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

distributions in R

distribution	R command
eta(a,b)	beta
C(a,b)	cauchy
χ^2	chisq
Exponential	exp
F(m; n)	f
Γ	gamma
U(a,b)	unif
logistic	logis
lognormal	Inorm
$N(\mu, \sigma^2)$	norm
t	t
B(n,p)	binom
geometric	geom
hypergeom.	hyper
$NB(\alpha, \theta)$	nbinom
Poisson	pois

Background

Benedikt Gräler

Probability Theory

- Distributions Random Variables
- Extreme Value Distributions
- cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Random Variables

Formally speaking, a (real valued) random variable Z is a (measurable) function $Z : \Omega \to \mathbb{R}$.

Practically speaking, a *random variable* Z describes some property which is subject to some randomness.

We usually deal with a *spatial random field* Z over some spatial region S. A spatial random field is a set $Z := \{Z(s) | s \in S\}$ of (spatial) random variables Z(s) at different locations $s \in S$.

These Z(s) take for some random event ($\omega \in \Omega$) a value in their domain (e.g. range of temperatures). Their behaviour may change for different locations $s \in S$ (non-stationary vs. stationary spatial random fields).

Background

Benedikt Gräler

Probability Theory

Distributions

Random Variables

Extreme Value Distributions cdf-Transform

n-variate Distributions Practical

Statistics

Estimation GOF Practical

Extreme Value Distributions

A special class of probability distributions are the *extreme* value distributions (evd). A evd is characterized by its cdf G through the fact that

$$\lim_{n \to \infty} G^n = G$$

Where G^n is the cdf of $\max(X_1, \ldots, X_n)$ and the X_i are independent copies of random variables following the distribution induced by G.

One can show that there are only three families of extreme value distributions: *Gumbel, Fréchet* and *Weibull*. These can even be parametrized as single family (*generalized extreme value distribution*).

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables

Extreme Value Distributions

cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables

Extreme Value Distributions

cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

References & further readings

The remarkable difference is in the tails of the distributions.

Extreme Value Distributions posses *heavy tails*. That is, even small regions very far from the mean of the distribution (multiple standard deviations) have a considerable positive probability.

Normal vs. Gumbel

Comparing the probabilities of the standard Normal and Gumbel distribution both with mean 0 and standard deviation 1 the ratios for the first 10 multiples of the standard deviation are:

Х	Gumbel/Normal
1	0.6
2	1
3	3
4	29
5	746
6	51e+3
7	9e+6
8	4e+9
9	7e+12
10	25e+15
:	:

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables

Extreme Value Distributions

cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Gumbel

The Gumbel evd is defined on $\mathbb R$ with parameters $\mu\in\mathbb R$ and $\beta\in(0,\infty).$ Its density is given by

$$f_G(x) = \frac{e^{-(x-\mu)/\beta}}{\beta} \cdot \exp(-e^{-(x-\mu)/\beta})$$

and its cumulative distribution function is

$$F_G(x) = \exp(-e^{-(x-\mu)/\beta}).$$

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables

Extreme Value Distributions

cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Fréchet

The Fréchet evd is defined on $(0,\infty)$ with parameters $\alpha\in(0,\infty)$, $m\in\mathbb{R}$ and $s\in(0,\infty)$. Its density is given by

$$f_F(x) = \alpha \left(\frac{x-m}{s}\right)^{-(1+\alpha)} \exp\left(-\left(\frac{x-m}{s}\right)^{-\alpha}\right)$$

and its cumulative distribution function is

$$F_F(x) = \exp\left(-\left(\frac{x-m}{s}\right)^{-\alpha}\right)$$

.

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables

Extreme Value Distributions

cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Weibull

The Weibull evd is defined on $[0,\infty)$ with parameters $\lambda \in (0,\infty)$ and $k \in (0,\infty)$. Its density is given by

$$f_W(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} \cdot \exp\left(-\left(\frac{x}{\lambda}\right)^k\right)$$

and its cumulative distribution function is

$$F_W(x) = 1 - \exp\left(-\left(\frac{x}{\lambda}\right)^k\right)$$

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables

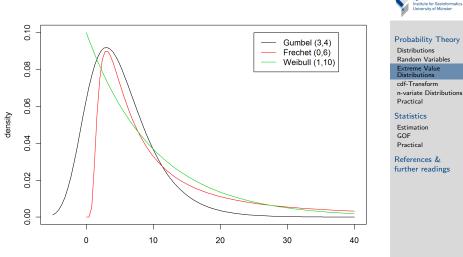
Extreme Value Distributions

cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

The three Extreme Value Distributions



Background Benedikt Gräler

cdf-Transform

We will need the following theorem later on:

Theorem

For a random variable X following any distribution D with cdf F_D the transformed variable $F_D(X)$ follows the standard uniform distribution U(0, 1).

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions

cdf-Transform

n-variate Distributions Practical

Statistics

Estimation GOF Practical

from univariate to n-variate Distributions

There are several ways of extending univariate distributions to n-variate distributions (explicit, conditional, copulas, ...). Consider for example the n-variate normal distribution:

Example

We define new parameters: the mean vector $\mu \in \mathbb{R}^k$ and the covariance matrix $\Sigma \in \mathbb{R}^k \times \mathbb{R}^k$ (symmetric and positive-definite). The multivariate density is given by

$$f_N(\boldsymbol{x}) = rac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-rac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^t \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})
ight).$$

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions

cdf-Transform

n-variate Distributions Practical

Statistics

Estimation GOF Practical

The Joint cdf

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value

Distributions

cdf-Transform

n-variate Distributions Practical

Statistics

Estimation GOF Practical

References & further readings

The *joint cdf* of some n-variate distribution \mathbb{P}_n is given by:

$$H(x_1,\ldots,x_n) = \mathbb{P}_n(X_1 \le x_1,\ldots,X_n \le x_n)$$

In the case of bivariate distributions it is the probability of the lower left rectangle of the point (x_1, x_2) (i.e. $(-\infty, x_1) \times (-\infty, x_2)$).

Tasks

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

- play around with some distributions (i.e. evd) by comparing densities for different parameters of one family and between families
- find parameters for the Gumbel distribution such that its mean and standard deviation are (approximately) the same as for the standard normal distribution.
- empirically validate the theorem on the cdf-Transform

Statistics

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

References & further readings

In (geo)statistics we usually observe a sample/realization $\mathbf{Z} = (z(s_1), \ldots, z(s_n))$ of some spatial random field $\mathcal{Z} = \{Z(s_i) | 1 \le i \le n\}$ and want to derive the underlying probability distribution.

Knowing the underlying probabilistic model enables us to explain the observed processes, to run simulations and to perform forecasts.

Single Characteristic Values I

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

References & further readings

Usually we start with (descriptive) estimates of single values like *mean*, *variance* or *skewness* of a given sample.

In some cases, these (moment) estimates completely determine the *parameters* of a distribution (but not the distribution itself!). This estimation procedure is called *method of moments*.

Single Characteristic Values II

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

References & further readings

Example

The parameter λ of the exponential distribution $Exp(\lambda)$ can be estimated by the mean $\hat{\mu}$ of the sample Z through $\hat{\lambda}(\mathbf{Z}) = \hat{\mu}^{-1}$.

The skewness of a sample may give advise in selecting a suitable distribution before one estimates the parameters.

Method of Moments

The empirical (according to the sample $\mathbf{Z} = (z_1, \ldots, z_n)$) and theoretical (of the distribution Z) moments of different order are compared. This leads to a set of equations which can then be solved for the distributions parametrs:

$$\mathbb{E}(Z) = \frac{1}{n} \sum_{i=1}^{n} z_i$$
$$\mathbb{E}(Z^2) = \frac{1}{n} \sum_{i=1}^{n} z_i^2$$
$$Var(Z) = \mathbb{E}(Z^2) - \mathbb{E}(Z)^2 = \frac{1}{n} \sum_{i=1}^{n} z_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} z_i\right)^2$$
$$\mathbb{E}(Z^3) = \frac{1}{n} \sum_{i=1}^{n} z_i^3$$

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Maximum Likelihood

The *maximum likelihood* approach grounds on the assumption that the drawn sample \mathbf{Z} is a very likely one. Thus, the parameter(s) $\theta \in \Theta$ are chosen for which \mathbf{Z} becomes the *most likely* sample to occur:

$$\hat{\theta}_M(\mathbf{Z}) = \arg \max_{\theta \in \Theta} \prod_{i=1}^n f_{\theta}(z)$$

or equivalently

$$\hat{\theta}_L(\mathbf{Z}) = \arg \max_{\theta \in \Theta} \sum_{i=1}^n \log (f_{\theta}(z))$$

Background

Benedikt Gräler

ifgi Institute for Geoinformatics University of Münster

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions

Practical

Statistics

Estimation GOF Practical

Bayes Estimator

We add an *a priori* belief $p: \Theta \rightarrow [0,1]$ to the parameter space Θ (no clue might mean uniform distribution over all parameters). The *Bayes estimator* minimizes the mean square error (MSE, or any other appropriate risk). Thus θ becomes a random variable.

For the MSE the Bayes estimator $\hat{\theta}_B(\mathbf{Z})$ is the mean of the *a* posteriori distribution of θ and given by

$$\hat{\theta}_B(\mathbf{Z}) = \mathbb{E}(\theta|\mathbf{Z}) = \int\limits_{\Theta} \vartheta f(\vartheta|\mathbf{Z}) d\vartheta$$

where

$$f(\vartheta|\mathbf{Z}) =_{Bayes} \frac{p(\vartheta)f_{\vartheta}(\mathbf{Z})}{\int\limits_{\Theta} p(t)f_t(\mathbf{Z})dt}.$$

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Tools in R

- mean, var, sd, summary
- histograms: hist(data, freq=F)
- overlaying functions: curve(dnorm(x), add=T)
- empirical cdf: ecdf(data) returns a step function
- quantile-quantile plots: qqplot compares quantiles of two samples
- calculating quantiles: quantile(data, prob)
- log-likelihood estimation: mle(minuslogl) minimizes the minuslogl function
- estimating a non parametric density: density(data, bw, kernel, ...)

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF

Practical

Fitting Extreme Value Distributions

We can either assume that the sample is drawn from an evd alone or a convex combination of distributions. An evd can be fitted in the same way as *usual* distributions, but there are some more tools.

- the POT-method (points over threshold) helps to select a threshold and to identify the maxima (gpd)
- annual block method: select the daily/weekly/monthly/yearly maxima as sample (gev)

Background

Benedikt Gräler

ifgi Institute for Geoinformatic: University of Münster

Probability Theory

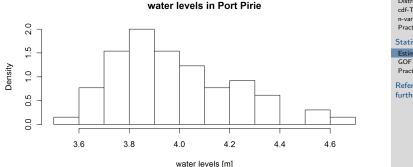
Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Fitting a evd Using POT I

We use the dataset portpirie (package: evd) containing the annual maximum sea levels from 1923 to 1987.



Background

Benedikt Gräler

Institute for Geoinformatics University of Münster

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation Practical

Fitting a evd Using POT II

The mean residual life function

$$mrl(u) := \mathbb{E}(Z - u | Z > u) = \frac{\mathbb{E}((Z_i - u)\mathbf{1}_{Z_i > i})}{\mathbb{P}(Z_i > u)}$$

is linear in u for generalized pareto distributions (a joint parametrization of evd for exceedances).

Plotting mrl(u) for all possible values lets us choose an appropriate threshold. The slope b of the plot can be used to calculate the *shape* parameter γ by $\hat{\gamma} = b/(1+b)$.

The parameters scale σ and location μ can be derived from a qq-plot of theoretical quantiles of a gpd with $\gamma = \hat{\gamma}$, $\sigma = 1$ and $\mu = 0$ against the sample.

Background

Benedikt Gräler

Probability Theory

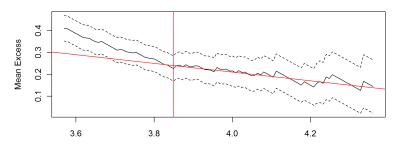
Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Fitting a evd Using POT III

We chose a threshold of 3.85 m and fitted a line with slope b = -0, 2. Mean Residual Life Plot



Threshold

mrlplot(portpirie)
abline(v=3.85,col="red")
abline(1.01,-0.2,col="red")

Background

Benedikt Gräler

ifgi Institute for Geoinformatics University of Münster

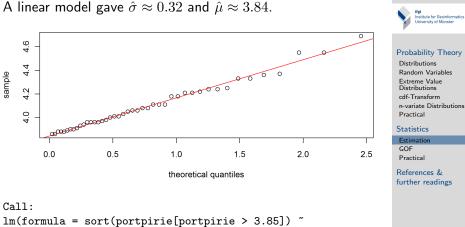
Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Fitting a evd Using POT IV



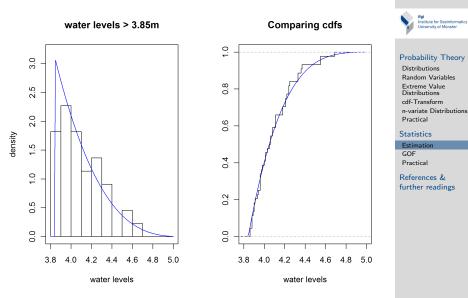
```
qgpd((1:44)/45, shape = -0.25))
Coefficients: (Intercept)
                            slope
                   3.8431
                           0.3231
```

Background

Benedikt Gräler

Fitting a evd Using POT V

Background



Fitting a evd Using Anual Blocks I

The data set portpirie actually is aquired as anual maxima water levels. Thus, we might try to fit a *generalized extreme* value distribuitopn (gev) right away.

```
> fgev(portpirie)
Call: fgev(x = portpirie)
Deviance: -8.678117
```

Estimates

loc	scale	shape
3.87475	0.19805	-0.05012

Standard Errors

loc	scale	shape
0.02793	0.02025	0.09826

Optimization Information Convergence: successful Function Evaluations: 31 Gradient Evaluations: 8

Background

Benedikt Gräler

ifgi Institute for Geoinformatic: University of Münster

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

Fitting a evd Using Anual Blocks II

A visual comparison shows a quite reasonable fit:

water levels in Port Pirie 20 1.5 density 1.0 GOF 0.5 0.0 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8

water levels [m]

Background

Benedikt Gräler

Institute for Geoinformatics University of Münster

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation Practical

Most techniques will give an estimate no matter how far fetched the underlying concept might be. *Goodness of fit tests* (*GOF*) are used to evaluate the fit.

Depending on the complexity of the model, a simple test-statistic might do, or a simulation needs to be run in order to compare the behavior of the fitted probability distribution to the one sample.

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation

GOF

Practical

Comparing Distributions I

The Kolmogorov-Smirnov test (KS-test) compares the ecdf with the fitted cdf by calculating its biggest difference. An alternative is the Cramér-von-Mises test (CvM-test) which considers the integral over the squared difference of two cdfs.

Example

```
In case of the fitted gpd we get:
```

```
> ks.test(exce, "pgpd", loc=3.8431, scale=0.3231, shape=-0.2)
```

One-sample Kolmogorov-Smirnov test

```
data: exce
D = 0.0753, p-value = 0.9644
alternative hypothesis: two-sided
```

Thus, our hypothesis (the sample was drawn from gpd with the estimated parameters) can not be rejected for any common significance level.

Background

Benedikt Gräler

ifgi Institute for Geoinformatics University of Münster

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF

Practical

Comparing Distributions II

Example

In case of the automatic fit of the gev we get:

One-sample Kolmogorov-Smirnov test

```
data: portpirie
D = 0.0606, p-value = 0.9706
alternative hypothesis: two-sided
```

Thus, our hypothesis (the sample was drawn from gev with the estimated parameters) can not be rejected for any common significance level.

Background

Benedikt Gräler

ifgi Institute for Geoinformatic: University of Münster

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF

Practical

GOF by simulation

In cases where the underlying distribution used to calculate critical values/p-values is unknown a bootstrapping procedure can be used:

- **1** estimate θ from the sample **Z** through one of the given estimators
- **2** compute the test-statistic s_0 (e.g. CvM-test-statistic)
- 3 simulate a sample $\bar{\mathbf{Z}}$ from the assumed distribution of the same size as the original one
- **4** estimate $\overline{\theta}$ from $\overline{\mathbf{Z}}$ through the same estimator as above
- 5 repeat the steps 3 and 4 for a large integer N>100 and compute each test-statistic $s_i, 1 \le i \le N$
- 6 the p-value can be approximated by $\#\{1 \le i \le N \mid s_i > s_o\}/N.$

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation

GOF

Practical

Tasks

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

- fit some distributions (i.e. evd) to given samples (meuse, or use data() to look for more) using the methods of moments and the maximum likelihood estimator
- fit a distribution to the meuse dataset/your dataset
- implement a Bayes estimator in R
- conduct a goodness of fit test by simulation

Background

Benedikt Gräler

Probability Theory

Distributions Random Variables Extreme Value Distributions cdf-Transform n-variate Distributions Practical

Statistics

Estimation GOF Practical

References & further readings

Löwe, M., Mathematische Statistik http://wwwmath.uni-muenster.de/statistik/ loewe/mathstatistik.pdfl

Löwe, M., Extremwert Theorie, http://wwwmath. uni-muenster.de/statistik/loewe/extrem.pdf